Study of Hardware Transactional Memory Characteristics and Serialization Policies on
Haswell

Marcio Machado Pereira?, Matthew Gaudet®, J. Nelson Amaral®, Guido Araujo®

“Computer Science Institute, University of Campinas — UNICAMP — Brazil
b Computer Science Departament, University of Alberta, Canada

Abstract

This paper presents an extensive performance study of the implementation of Hardware Transactional Memory (HTM) in the
Haswell generation of Intel x86 core processors. It evaluates the strengths and weaknesses of this new architecture by explor-
ing several dimensions in the space of Transactional Memory (TM) application characteristics using the Eigenbench [1] and the
CLOMP-TM [2] benchmarks. This paper also introduces a new tool, called htm-pBuilder that tailors fallback policies and allows
independent exploration of its parameters.

This detailed performance study provides insights on the constraints imposed by the Intel’s Transaction Synchronization Exten-
sion (Intel’s TSX) and introduces a simple, but efficient policy for guaranteeing forward progress on top of the best-effort Intel’s
HTM which was critical to achieving performance. The evaluation also shows that there are a number of potential improvements
for designers of TM applications and software systems that use Intel’s TM and provides recommendations to extract maximum

benefit from the current TM support available in Haswell.

Keywords: Programming Techniques, Concurrent Programming, Transactional Memory.

1. Introduction

This paper presents a performance evaluation of the Hard-
ware Transactional Memory (HTM) capabilities in Intel’s
Haswell micro-architecture called the Transactional Synchro-
nization Extensions (TSX) [3]. The goal is to study perfor-
mance from the application perspective, providing a precise
evaluation of the strengths and weaknesses of this architectural
feature. To efficiently exploit the parallelism available through
Intel’s TSX, it is important to know the constraints imposed on
software by its hardware design, and the requirements that must
be fulfilled by software support systems.

The main finding of this performance study is that Intel’s
TSX performance is most sensitive to i) the transaction foot-
print, defined as the number of shared write accesses executed
inside a transaction; ii) the working-set size, defined as the
number of distinct memory locations accessed — read from or
written to — inside a transaction;! iii) the transactional write
ratio (or pollution), defined as the ratio between the number
of shared writes and the total number of shared accesses in a

Email addresses: mpereira@ic.unicamp.br
(Marcio Machado Pereira), mgaudet@ualberta. ca (Matthew Gaudet),
amaral@cs.ualberta.ca (J. Nelson Amaral), guido@ic.unicamp.br
(Guido Araujo)
'A more precise metric is the number of distinct cache lines that are occu-
pied by the working set of a transaction.

Preprint submitted to Elsevier

transaction; and iv) the contention level in a transactional ap-
plication. The contention level is the probability that dynamic
transactions will abort due to a conflicting access.

This sensitivity is first demonstrated through an analysis that
isolates the effect of each TM application characteristic on per-
formance using Eigenbench [1] and CLOMP-TM [2] to identify
the constraints imposed by TSX. Next the study evaluates the
performance of TSX using the more realistic STAMP bench-
mark suite [4].

Based on the experimental results, the following application
features are likely to yield performance gains when using Intel’s
TSX:

¢ In a low-contention scenario, if the transactional footprint
is small, then it is preferable to convert multiple transac-
tions into a single transactional region. This conversion
amortizes the overhead necessary to execute a transaction
as long as the transaction footprint do not exhaust the ca-
pacity of cache lines. In high-contention scenarios, it is
preferable to maintain transactions with smaller footprint
to reduce wasted work.

e Transaction footprint and contention are the most impor-
tant characteristics that dictate TM performance. These
characteristics are strongly influenced by temporal loca-
lity and pollution. To obtain performance gains, a designer

July 28, 2015

should create data structures that increase temporal loca-
lity and reduce pollution. For example, data structures
based on hash often have a better performance than linked
lists because they tend to reduce pollution.

e The performance of Intel’s TSX is also sensitive to the
policy applied on the fallback path to ensure forward
progress. The right choice of fallback policy can avoid
unnecessary serialization thereby allowing more concur-
rency and improving performance.

This paper is organized as follows. Section 2 provides back-
ground on Hardware Transactional Memory and introduces
the Intel’s Transactional Synchronization Extensions with a
brief description of transactional abort’s causes and the various
sources of data conflicts. Section 3 describes the policies gene-
rally used on the evaluations, and also introduces SerControl,
a simple and effective serialization policy that is more efficient
for TM on Intel’s TSX than policies used so far [5, 6]. Sec-
tion 4 describes our experimental setup, a detailed assessment
of Intel’s TSX and recommendations on how to best use the
new Inte]l HTM support. Section 5 presents an evaluation of
Intel’s TSX using the STAMP benchmark suite [4]. Section 6
explores, with the aid of a new tool called htm-pBuilder, the
performance of Intel’s TSX for various fallback policy tunings
and transaction properties. Section 7 discusses related work.

2. Background Information

Transactional Memory (TM) makes it easier for program-
mers to develop parallel programs. With TM, programmers
enclose a group of instructions within a transaction to execute
the instructions in an atomic and isolated way. The underlying
TM system runs transactions in parallel as long as they do not
conflict. Two transactions conflict when they access the same
address and one of them writes to it. A Hardware TM (HTM)
system uses dedicated hardware to accelerate transactional exe-
cution [7, 8, 9]. The HTM system starts a transaction by execut-
ing a register checkpoint with shadow register files. Whenever
the transaction writes to memory, the transactional value pro-
duced by the write is stored separately from the original value
by either buffering the transactional data in hardware buffers,
such as the cache, or by logging the old value, a process called
data versioning. Data versioning can be implemented by aug-
menting the cache with additional bits [10] or by using separate
hardware structures, such as Bloom filters [11], to record the
memory addresses read and written by the transaction. A con-
flict between two transactions is detected by comparing the read
sets and the write sets of both transactions. If a conflict is de-
tected, one of the transactions is rolled back by discarding its
transactional writes, restoring the values in the registers to the
values saved at the checkpoint at the start of the transaction,
and discarding any transactional changes to the state of the pro-
gram. When there is no conflict, the transaction commits the

transactional data and discards both the transactional metadata
and the values saved at the register checkpoint.

Software support for HTM systems is limited by the informa-
tion and control provided by the hardware-software interface.
Typically HTMs offer limited scope to implement contention
management, used to provide forward progress in STM sys-
tems, and so must rely on a lock based fallback policy to pro-
vide forward-progress guarantees. For instance, the TM run-
time in the IBM BG/Q machine adopts a policy of performing
a certain number of retries for an aborting transactions before
causing the transaction to serialize through the acquisition of a
global lock [12].

Intel Transactional Synchronizations Extensions (Intel’s
TSX) [3] is a recent addition to the Intel architecture that
provides programmers with hardware transactional memory in
the Haswell processor. Intel’s TSX provides two software
interfaces to programmers: Hardware Lock Elision (HLE),
a legacy-compatible instruction set extension, and Restricted
Transactional Memory (RTM), a new instruction-set inter-
face. HLE provides a prefixed instruction that indicates that
a lock acquisition is to be elided, with the body executed in
a transaction instead. If the transactional execution fails, the
execution falls back to the original lock. The RTM interface
executes code in a transaction, but provides no guarantee that
a transactional execution will eventually commit. Therefore
the program must always provide code to handle a transac-
tional abort that can either restart the transaction or take a non-
transactional path.

A processor can perform a transactional abort for numerous
reasons. A primary cause is conflicting data accesses between
transactions executing in different logical processors. Such
conflicting accesses force an abort to ensure the preservation
of transactional isolation. Transactional aborts may also oc-
cur because of limited transactional resources. For example,
the amount of data accessed in a transactional region may ex-
ceed the HTM capacity limit. Intel’s TSX uses the EAX regis-
ter to communicate abort status to software. Causes for abort
in TSX include execution overlap of transactional and non-
transactional regions and system events such as system calls
and page faults. During startup transactional programs expe-
rience a higher rate of aborts due to page faults. They expe-
rience a lower rate of such aborts after reaching steady state.
However, in programs with very short run times, page-fault-
induced aborts may appear to dominate.> A high rate of page-
fault-induced aborts is also observed soon after large regions of
memory are allocated.

3. Forward-Progress Policies

Intel’s TSX does not guarantee that a transactional execu-
tion will eventually commit. The expectation is that a software

2This type of abort affects most of the experiments with current benchmarks.

fallback handler is provided by the policies that guide the TM
application. This handler may create an unbounded TM sys-
tem, similar to a Software TM (STM), by providing forward-
progress guarantees for transactions that fail. Generally, the
strategy adopted is to retry the execution of the transaction, with
or without a time delay, to attempt to complete the transaction
execution speculatively. A time delay, often called backing-
off, can be used to avoid the pathological pattern called Con-
voy [13], where many transactions retry simultaneously. In the
face of persisting failure, a transaction must be completed by
running it in a non-speculative execution mode. A common so-
lution is to acquire a global lock to prevent other transactions
from committing concurrently. The experimental tool described
herein implements three forward-progress policies:

MaxRetry is the simplest way to ensure forward-progress.
It simply limits the number of times that a dynamic transac-
tion can be retried to a predefined threshold N. A transaction
that exceeds its retry budget must acquire a global back to ex-
ecute while. For the benchmarks studied, an empirical evalua-
tion indicated that the best results occur with N equal twenty.
MaxRetry is not a policy used in any actual HTM system. It
is included in this study to enable an evaluation of the effect
of backing-off in reducing the Convoy pathology described by
Bobba e al. [13].

Backoff is a forward-progress policy similar to MaxRetry,
except that the aborted transaction waits for a time delay before
restarting. The delay duration is chosen uniformly at random
from a range whose size increases exponentially with every
restart. This is continuously done up to the limit of (predefined)
N consecutive aborts. We conducted experiments for different
values of N and the best results were obtained for N equal to
twenty. After that, the transaction must acquire the global lock
to execute in exclusive mode.

SerControl is a new forward-progress policy that selects one
of three actions upon a transaction abort: retry, backoff or seri-
alize. The SerControl policy examines the return code provided
by the hardware in the EAX register, which contains various
status bits indicating the cause of the abort. If the transaction
aborted because of a conflict with other transactions or because
of capacity limitations, the action selected is backoff. This strat-
egy makes sense because a capacity abort may be caused by
competing transactions vying for the same storage resources.
To prevent frequent aborts due to capacity overflow SerControl
serializes a transaction that has suffered two consecutive capac-
ity aborts.> If the cause of an abort is other than conflict or
capacity, the action is retry for three consecutive aborts* before
changing to backoff. The idea is that aborts, such as an abort
caused by a page-fault, may not occur again if the transaction

3This safeguard is needed because an abort reported as a capacity abort may
be due to temporary competition for resources.

4This threshold was determined through a series of experiments, with the
STAMP benchmarks, that examined performance, serialization rate, and num-
ber of aborts due to different causes.

is retried immediately. The SerControl policy limits retries to a
threshold of N consecutive aborts. The value of N used in the
evaluation was twenty for a fair comparison with the other two
policies. After N retries, a transaction must be executed under
the control of a lock — a serialize action.

Experience with STM, where transactions are implemented
entirely in software, has demonstrated the simplicity of trans-
actional programming, but has raised challenging performance
issues [20]. In our experiments with STAMP benchmark suite,
we have confirmed the results found in [20]; although In-
tel’s TSX exhibited lower overhead when compared with some
STM’s (e.g., TinySTM [21]) this is not always true. To achieve
better performance, the SerControl policy kept this overhead
low by using the minimum data structure required to manage a
transaction. This data monitors the number of retries and the
number of capacity-induced aborts, and selects the SerControl
policy action and the time delay (see the pseudo-code in List-
ing 1). Henceforth, the TM overhead measured in the experi-
ments includes the overhead imposed on the transaction man-
agement by the forward-progress policies.

Listing 1: Low-Overhead High-Accuracy SerControl Policy

1 upon TM.START

2 int backoff = MIN.BACKOFF;

3 int (try = 0, status = 0);

4 int (conflict = 0, capacity = 0);
5 long wait = 0;

7 upon TM.BEGIN

8 if (++try >=MAXRETRY) status = SERIALIZE;
9 else

10 case (status = _xbegin())

11 XBEGIN_STARTED: ;

12 XABORT.CONFLICT :

13 capacity = 0;

14 status = (++conflict >=MAX_.CONFLICT) ? BACKOFF : RETRY:
15 XABORT.CAPACITY :

16 status = (++capacity >=OVERFLOW_.CAPACITY) ? SERIALIZE : RETRY:
17 others :

18 capacity = 0;

19 status = (try>=MAX.CONTROL) ? BACKOFF : RETRY;

20 esac

21 fi

22 if (status==SERIALIZE)

23 status = get_spin_lock ()

24 fi

25 if (status==IN_SPIN.LOCK) or

26 (status==XBEGIN.STARTED and spin-lock==FALSE)

27 begin-transaction ()
28 fi

30 upon TM.LEND

31 if (status==IN_SPIN.LOCK)
32 release_spin_lock ()

33 else

34 commit-transaction ()

35 fi

37 upon TM.ABORT

38 if (status==BACKOFF)

39 wait = get.new-time-delay ()
40 while (wait—-) ;

41 backoff++;

42 fi

Sections 4, 5, and 6 present results from an extensive exper-
imental evaluation based on Eigenbench, CLOMP-TM, and the
STAMP benchmarks. In Section 4 transaction properties are
varied but the parameters for each serialization policy, such as
the maximum number of retries, are constant. Section 5 uses
the STAMP benchmark for a similar evaluation with fix policy
parameters. Then in Section 6 a new tool is used to explore a
range of values for the parameters of the serialization policies.

4. Experimental Evaluation

This section presents an experimental evaluation using a pro-
totype implementation of the SerControl, MaxRetry and Back-
off forward-progress policies on top of Intel’s TSX processor to
guide TM applications. The main findings about the policies
are:

o Simple policies, such as MaxRetry and Backoff, have the
potential to deliver performance in RTM because of their
low overhead to monitor transaction execution and of their
simple approach to decide when to retry an aborted trans-
action. However, the experimental results indicate that
these policies are also sensitive to the tuning of the pa-
rameters used to decide when to restart or serialize the ex-
ecution of a transaction.

e Among the policies evaluated, SerControl is the most suc-
cessful in delivering performance for transactional appli-
cations for RTM due to its strategy of reducing potential
conflicts and, consequently, the number of aborts. More-
over, strict adherence to Bobba’s suggestion of exponential
backoff [13] can be detrimental to some applications.

4.1. Experimental Infrastructure and Methodology

This experimental evaluation uses a computer with an In-
tel Xeon Processor E3-1200 v3 (4 cores with 2 hyper-threads
per core, 8 threads in total) clocked at 3.10 GHz with 8 GB of
RAM. Each core has a 32 KB L1 Data Cache and a 256 KB L2
Cache. The operating system is Ubuntu Server 13.10 amd64.

The results presented in all experiments are averaged over
ten executions and the graphs show a 95% confidence interval.
In the graphs that show an upper-bound speedup, this bound
represents the case of a multi-threaded execution without the
protection of a TM system. This measurement serves as a hy-
pothetical upper limit for the available performance and is use-
ful to show the overhead of the TM system when independent
transactions are running (zero contention). In, the experiments
that estimate the upper-bound speedup, the atomic execution of
critical sections is not guaranteed and the results could be in-
correct. Therefore, it is said that the system is executing in un-
protected mode. Unless noted, all speedups are normalized to
the execution time of the corresponding best sequential version.

4.2. EigenBench Results

Experiments with the Eigenbench [1] micro-benchmark en-
able a characterization of Intel’s TSX RTM and provide signifi-
cant insight on its strengths and weaknesses. The Eigenbench is
designed to enable independent exploration of the properties °

SFor the Eigenbench, transaction footprint is a derived property, calculated
from transaction length X pollution.

of a TM application shown on Table 1. Each instance of the
Eigenbench benchmark can be thought of as a point in a multi-
dimensional space defined by these properties.

Table 1: TM properties

Property Definition empirical values
Transaction length Number of shared accesses per TX 30 words
‘Working-set size Size of frequently used memory 32 KB/thread
Pollution Fraction of shared writes to shared accesses 10%

Temporal locality ~ Probability of repeated address per shared access 0%

Contention Probability of conflict of a transaction 0%
Predominance Fraction of shared access cycles inside TX (not explored) 100%

Density Fraction of non-shared cycles outside TX (not explored) 100%

The methodology to use Eigenbench to discover character-
istics of the Intel’s TSX RTM implementation consisted of an
initial empirical exploration of the space defined by the values
of the properties listed in Table 1. This exploration led to the
discovery of a “baseline configuration” where the values listed
on the rightmost column of Table 1 were used. With these val-
ues fixed, a more systematic exploration of the space varied the
value of a single property at a time while maintaining the other
values at the baseline configuration. In occasions where this
exploration indicated that there was potential for better perfor-
mance when two or more properties were moved away from
this baseline, those combinations were also tried.

The graphs in Figure 1 display the trends for each of these
experiments using the three policies: MaxRetry, Backoff and
SerControl. The horizontal axis denotes the value of the pro-
perty that is being controlled and the vertical axis denotes the
speedup results for four threads, normalized in relation to the
sequential execution of the same program. Except for the exper-
iment reported in the graph in Figure 1(g), independent trans-
actions are used to evaluate the overhead of the TM system. To
show the overhead, a curve for a performance upper bound is
also included. This upper bound is estimated by running the se-
quential version in parallel “unprotected” with no transactional
overhead from fallback-handling code.

An important limitation of HTM implementations is the
amount of speculative state that the HTM system can store.
RTM can only successfully complete speculative transactions
that have a small footprint because all speculative state is stored
in the relatively small L1 data cache. The experiment reported
in Figure 1(a) demonstrates this limitation. The SerControl po-
licy performs better than MaxRetry and Backofffor a pollution
of 1% thanks to its strategy of reducing potential conflicts and
hence imposing a lower demand on the L1 data cache in com-
parison with the other policies. However, the SerControl per-
formance degrades quickly for transaction lengths greater than
60 words® for a pollution of 10%. The lower performance for
smaller transactions (left side of the plots) indicates that the
TM overhead becomes significant. A separate measurement,
executing on a single thread, confirms this observation. For an

%0One (1) word equals four (4) bytes in the target machine.

empty transaction, or a transaction length equal zero, the trans-
actional execution time is twelve times higher than the sequen-
tial execution that has no overhead. For transaction length equal
to 5 words this time drops to 2 times of the sequential execu-
tion. When transaction length reaches 30 words, this overhead
is almost totally amortized. The graph on the left in Figure 1(b)
shows that SerControl perform better than Backoff between 60
and 140 words while the graph on the right in same figure points
out that SerControl is dramatically more reluctant to serialize
when capacity aborts occur, confirming one of the payoffs of
the SerControl policy.

The graphs in Figure 1(c) show the effect of different
working-set sizes for transaction lengths equals to 30 (left plot)
and 50 (right plot) words. MaxRetry is the policy that suffers
most due to the high number of aborts and retries and hence
the overhead is more pronounced in short transactions. There
is a dramatic speedup drop starting at 256 KB/thread — even
for the upper-bound curve — because the data processed by the
transactions exceed the capacity of the L2 cache. For TX length
equal thirty the most interesting comparisons are the curves for
MaxRetry and Backoff on the left of the plot and the curves for
Backoff and SerControl on the right of the plot. To better un-
derstand these performance trends, Figure 1(d) reports the ratio
between the number of transactions that abort and the number
of transactions that commit on the left, and the ratio between the
number of transactions that serialize and the number of transac-
tions that commit on the right. For smaller working sets, always
backing-off is a good policy because it eliminates the convoy-
effect aborts resulting from MaxRetry, as the abort ratios on
the left plot of Figure 1(d) indicate. As the working-set size
becomes larger, the selective back off used by SerControl is
a better policy. However, with longer transactions and larger
working-sets, selectively backing-off does not prevent the in-
creasing number of aborts and serializations as shown by the
plots on the right of Figures 1(c) and 1(d).

A study of the effect of temporal locality on performance
is shown in Figure 1(e). The probability of address repetition
varies between 0 (no address is used twice in a transaction) and
1 (a single address is used inside each transaction). The ini-
tial drop in performance for both Backoff and SerControl for a
transaction length equal 50 occurs as addresses start being re-
peated. This may be explained by the associative effect of the
L1 data cache — the EigenBench generates random addresses
that might cause more potentially useful data elimination from
the cache.

Until the transaction footprint exhausts cache lines, at about
32% of shared writes for a transaction length of 50 (i.e., 64
bytes), the SerControl strategy of avoiding potentially unpro-
ductive retries yields higher speedups than either MaxRetry or
Backoff (see Figure 1(f)). The drop in speedup for SerControl
for larger transactions is due to the limited capacity in the cache
to store speculative state.

Although critical details are not available, there is sufficient

information to speculate about the nature of Haswell’s TM.
Haswell’s TM uses the L1 data cache to track the write-set.
While it stores transactional reads in the L1 data cache, it also
uses a separate mechanism, perhaps a Bloom Filters [14], to
track speculative reads that have been evicted from the L1 data
cache. The caches and fill buffers are competitively shared by
any active threads. However, store operations only need to write
the address (and eventually the data) into the store buffer while
load operations must write into the load buffer and also probe
the store buffer to check for any forwarding or conflicts. It ap-
pears that the shape curve of MaxRetry policy on the left graph
in Figure 1(f) is due to the difference in the conflict detection
mechanism between read- and write-sets and is stimulated by
increased competition due to the Convoy effect.

Finally, how does contention affect performance in the Intel’s
TSX? Experiments with transaction lengths equal to 20, 30 and
40 words — varying the fraction of writes per transaction be-
tween 5% and 100% — help address this question. The x-axis
shows the value of expected contention. The graphs in Fig-
ure 1(g) indicate that the TM performance drops quickly with
long or dirty transactions. All three policies are very sensitive
to contention greater than 4%, although the SerControl policy
performs better if the transaction length fit between 30 and 40
words. This level of contention was achieved for write-ratio of
30% to 40%, which implies in a transaction footprint between
48 and 64 bytes. This reveals a severe resource constraint for
TSX, limiting the footprint to the size of the L1 data cache.

4.3. CLOMP-TM Results

Section 4.2 showed that, to make an effective use of RTM
on Intel’s TSX, we need to define the design space that can be
exploited by the TM applications. For this, it is necessary to
complement this study with a more appropriate analysis of the
performance behaviour of RTM at different TM footprints. The
CLOMP-TM benchmark [2, 5] is used for this analysis.

CLOMP-TM is a synthetic memory-access generator
that emulates the synchronization characteristics of high-
performance computing applications. It is specifically designed
to expose the range of properties needed to characterize scien-
tific workloads. It was created to mimic the application charac-
teristics of several large scale, multi-physics applications used
in production at the Department of Energy laboratories in the
USA.

CLOMP-TM uses constructs such as atomics or OpenMP-
based constructs (omp critical and omp atomic) to synchronize
OpenMP threads with the same level of abstraction. We adapted
CLOMP-TM to use Intel’s TSX RTM with the prototype imple-
mentation of the SerControl policy to evaluate its performance
on small and large footprints, and also to compare the perfor-
mance obtained with the fine-grained lock implementation in
both low- and high-contention scenarios.

Figure 1: Analysis of RTM using EigenBench

(a) Transaction Length

(b) Analysis of outcomes for Transaction Length

4 F T T T T T T 4 F - - T T T 102 F 3 105 F 2
35 35 1 £t c 104 F
' g S
=~ \ o % Wri 5
% T l ? / L \ \ 8 10 1% Writes é 103 | 1% Writes
£ \ 8101 - >
£ 25 T - 25 T i \ * g 2.0
< \ \ ° <
T 2 \ 2 \ K102 -2
E| \ Lo A g 3
B 15 \ 1.5) 5103 T 3B
b3 \ g g
£ [N N A S) GO A D fw
s = = 4 y € 3
o.sl 1% Write: 05y 10% Writes 2 10—5l = 101
0 L L L L L L 0 L L L L L L 106 L L L L L L] 102 L L L L L L I
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 14 0 20 40 60 80 100 120 140
#(Reads+Writes) #(Reads+Writes) #(Reads+Writes) #(Reads+Writes)
(c) Working-set size (d) Analysis of outcomes for Working-set
. T T T T B r T T T T ! | ! | i I | ! | .
TX Length = 30 TX Length = 50 B 10 Txlength = 30 o 0l Txlength = 30 t
3s b 1 35 m‘\ 1 £ £
z L » S %
o /’ \ g 1 9 1
GL) [o
£ 25 25 / H .
T 1 24 2 <
] WA A | : o
E . 5 g
3 15 oo ¥ 5 bS] £
L | /o \\ ¢ £
Q fo
& 1 o &\ 1 L o001 g 001
- R
05 ‘r". u.s'—'...: *,.4....7 S s
< 5
° 0 0.001 g o001
0 2 4 6 8 10 12 14 o 2 4 6 8 10 12 14 0 2 4 6 8 10 0 2 4 6 8 10
#2X (KB/thread) #2X (KB/thread) 2% #(KBytes/thread) 2X #(KBytes/thread)
(e) Temporal Locality (f) Pollution
2 M A : : : : " : : :
35 35% e 35 35800y
= 44—+ 1 — ¢ - i\. '\i\
3) 5 s Ny i 3 1 Yl 3 =
s e L S 1 Ok X \ Ny o/
f 25 M T " 25 f 25 T 25
3 Y \{ TX Length = 50)/ < \l M |‘ \I '\.\‘/
S 2 I 2 S 2 i 2
3 \ / 2 N” / 1\ TX Length = 50
g 1s TX kength = 30 15 2 15 15
wn wn
M TX Length = 30
1 1 = 1 1
- A L E B =] - b
05 05 05 05
0 02 0.4 0.6 0.8 1 0 0.2 04 06 0.8 1 0 20 40 60 80 100 0 20 40 60 80 100
Probability of Address repetition Probability of Address repetition Fraction of Shared Writes Fraction of Shared Writes
(g) Contention
4 y T T T T T T y T 4 T T y T T T y T T 4 T T T T y y y y
3.5 - 3.5 @ 3.5
3
£ 25 2.5 2.5 &
£ \ "o—..\.\‘w e \.\.\ TX Length = 30 \ TX Length = 40
T 2 2
o e o o099
s Ll \ ..
B 15 1.5 *o—®- 1.5
g \ TX Length = 20 \\ o '\.\.\‘
@ 1 L 1 1
aEEEE-Ee L H—%I=-—I—I—>.-—f
0.5 R 0.5 0.5 1
o 0 0
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5 05 1 1.5 2 25 3 35 4 45 5
Expected Contention (%) Expected Contention (%) Expected Contention (%)
[Upper-bound MaxRetry Backoff 4~ SerControl @ |

CLOMP-TM resembles an unstructured mesh with a set of
partitions. Each partition holds a linked list of zones. To vary
the pressure on the memory system, the size of these zones
were configured with two values: 64 bytes, to fit the size of
the cache line, and 128 bytes. Also, two different contention
levels were used: low contention and high contention. Con-

tention occurs when multiple threads update the same zones
(for the contention scenarios, the memory access patterns used
were Adjacent and FirstParts, respectively.”) Each zone is pre-
wired to deposit a value to a set of other zones, called scatter
zones, which involves reading the coordinate of a scatter zone,

7For more information on memory access patterns [2].

doing some computation, and depositing the new value back
to the scatter zone. These value deposits were synchronized in
two ways:

e Small-TM is a small-footprint transaction with a single
scatter zone value update. Small-TM resembles the case
where a lock-prefixed instruction is used to enforce atom-
icity on a single variable.

e Large-TM is a large-footprint transaction where all scatter
zones are updated for each zone. Large-TM resembles the
update of multiple variables in one critical section.

Figure 2 show the results for 8 threads. Small Atomic (fine-
grained lock) denotes the use of the OpenMP construction
#pragma omp atomic. The X-axis denotes the number of scat-
ters for each zone, and at each scatter count, the speedup is
measured over the execution time of the corresponding serial
version. For clarity, the graphs show only the results for the
SerControl policy.

The results in the graph in Figure 2(a) lead to the follow-
ing best-practice guideline: in a low-contention scenario it is
preferable to convert multiple lock acquisitions or critical sec-
tions into a single transactional region, to better amortize the
TM overhead, because the transaction footprint does not ex-
haust the available cache-line capacity. In high-contention sce-
narios, it is preferable to maintain transactions with smaller
footprint, as evidenced by the graph in Figure 2(b).

Two additional best-practice guidelines arising from these re-
sults are: (i) transaction footprint and contention are the most
important characteristics that dictate the TM performance on
Intel’s TSX as evidenced by the graphs on Figures 1(a) and 1(g).
As shown in the graphs of Figures 1(e) and 1(f), one can reduce
the transaction footprint by reducing the pollution in transac-
tion or by increasing the temporal locality. These effects can be
achieved by carefully designing the data structures of the appli-
cation. (ii) Library-level support for TM matters. Moreover, try
to use a serialization policy similar to the SerControl policy to
avoid unnecessary serialization and to improve performance.

5. How does TSX perform with a more realistic bench-
mark?

This section uses the well-known, and widely used,
STAMP [4] benchmark suite to evaluate the behaviour of real
applications across the input-size dimension, similar to how
Eigenbench and CLOMP-TM were evaluated previously. This
study starts with the STAMP recommended configurations and
data sets for use in real machines (for detailed information, see
Table IV on [4]) and varies the input size to understand if real
applications see the same effects seen in the synthetic bench-
marks regarding working-set and transaction size. This is an
unconventional use of the STAMP benchmarks, but it is very

appropriate for this evaluation to understand the constraints
that Intel’s TSX creates for applications and application per-
formance.

Figure 3 shows the speedup results of the MaxRetry, Back-
off and SerControl policies, running on four threads, over the
sequential execution in the same configuration.

For Kmeans the size of the transaction is proportional to
the dimensionality of the space. Thus, we fixed the num-
ber of points (64 Kbytes), and vary the number of dimen-
sions. Kmeans in low-contention scenario (the graph in Fig-
ure 3(a)) showed good performance results with the recom-
mended parameters. Kmeans also exhibit high temporal lo-
cality and this further emphasizes the performance behaviour.
However, it falls with increasing contention, as shown in the
high-contention scenario (the graph in Figure 3(b)).

For vacation, we vary the number of records and, there-
fore the working-set size. Vacation (the graph in Figure 3(c))
showed a poor performance due to large-footprint transaction,
the governing characteristic.

The yada (Yet Another Delaunay Application) benchmark
implements Ruppert’s algorithm for Delaunay mesh refine-
ment. In the STAMP benchmark suite, yada does not come
with sufficient datasets to test the behaviour of the application
with different input sizes. We built a new dataset using the tri-
angle application [15] through successive refinements from the
data source ladder and we obtained data ranging from 32KB
to 4MB on the number of input vertexes. Yada (the graph in
Figure 3(d)) has relatively long transactions and a moderate
amount of contention. With the increase of input vertexes, the
transactions lead to large read- and write-sets and do not scale.

For Genome (the graphs in Figure 3(e)), we vary the num-
ber of gene segments. Even though the transactions in genome
are of moderate length and have moderate read- and write-set
sizes, the performance for Genome is very sensitive to increas-
ing the number of segments — there is a dramatic performance
drop because of longer transactions and larger working-set. The
fraction of capacity-aborts per commit is lower for SerControl
leading to slightly better performance. However, SerControl’s
strategy is not effective to reduce the convoy effect for genome.

For Intruder (the graphs in Figure 3(f)), we vary the num-
ber of traffic flows. The limited performance comes from the
large-footprint transaction and moderate-to-high levels of con-
tention. The change in traffic flows modifies the working-set
size, increasing the fraction of capacity aborts. The selective
backing-off strategy of SerControl reduces the fraction of ca-
pacity aborts, as shown at the graph on the right, but is not suf-
ficient to improve the performance when compared to Backoff

For labyrinth (the graphs in Figure 3(g)), we vary the
number of dimensions that change both working-set size and
transaction length. Labyrinth has very long transactions with
very large read- and write-sets. The amount of contention is

Figure 2: Analysis of RTM using CLOMP-TM

(a) Small Contention (b) High Contention
8 8 4 L S SS. e s e 4 s S S S 8 7
8 7 7 8 35 3.5
3 3
£ 6 6 £ 3 . 3
® Zone size = 64 Zone size = 128 o
= s 5 = a5t 2.5
5 &)
?, M 4l . i g S b R Zone size = 128
5 /. ‘\.\(5 Zone size = 64
3 3 3 8 3 15 1.5 - s
° ® °
s \q 5 W
3 2 - 2 g 1ir ol 1
9 EEEEE 2
[l senes 1 et 40060004000 m,%“ - [ensiitees . W
0 o 0 IR R T AR o A SO
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
#Scatters #Scatters #Scatters #Scatters
[Upper-bound Small Atomic —— Small-TM —@— Large-TM —@—
Figure 3: STAMP applications — Analysis on Speedup and fraction of aborts to different input sizes.
(a) Kmeans Low (b) Kmeans High (c) Vacation (d) Yada
. \'/ A . T T T T T 4 4
35 35
% 35 /] 5 °° s s
R d g)y oz g 3
7 s H § s g 25 g 25
gt : o : :
o o [2 [2
> 2 > 2 > >
3 3 AZY 3 3
S 1s S 1s 2 15 o 2 1s
; 1Y LN :
g g g e t-e L P
05 05 05 05
0 0 \ \ \ \ \ 0 . . . 0 . .
2 4 8 16 32 64 128 2 4 8 16 32 64 128 10° 10t 102 10% 104 101 102 103 104
64k points of 'x-axis' Dimensions 64k points of 'x-axis' Dimensions Number of records (KB) Number of input vertices (KB)
(e) Genome (f) Intruder
4 _ 9 4 9 T
)]
— 35 — 35
2 hH’_.\i\ S, L _ 2 S, /
b} 3
ERE 3 3 g 3 H
g / 8 g 8
2 1 < » <
g 25 S5 g 25 S5 -
S 3) 8
s ; s <
2
b H B - S
o <3 o <3
3 S & 3
noas £ v o5 2
» g g
s s
1 L L L ©a L L L 1 L L L O L L L
10! 102 103 104 10° 10! 102 103 104 10° 100 10t 102 103 104 100 10t 102 103 104
Number of Segments (KB) Number of Segments (KB) Number of traffic flows (KB) Number of traffic flows (KB)
(g) Labyrinth (h) Ssca2
4 r r r _ 300 r r ! 4 60
B]
35 € 3.5 £
— £ 250 n — £ 50 2
© S © o
2 3 ¢ 23 ©
o $ o $
El 3 200 E} 3 a0l]
z 25 M /- \ g 25 M
2 < 2 <
g 2 S 150 g 2 S 30
: \ g \\
2 15 = 2 15 vl
2 £ 100 1 2 £ 20
B e M/ RN
n 2 50 n 2 10
S S
” 5 M. ” 5 \'-.—P.
& 5
0 L L L © 0 L ° T 0 L L L O 9 I I
10° 10! 102 103 104 10° 10! 102 103 104 100 10t 102 103 104 100 10t 102 10° 104

very high because of both the large number of transactional ac-
cesses to memory and the number of capacity-induced aborts,

Number of nodes (KB)

Number of nodes (KB)

Number of nodes (KB)

MaxRetry —li—

Backoff —@—

SerControl —@— |

Number of nodes (KB)

even for the Backoff policy. There is no performance gain in
labyrinth for TSX with any of the policies.

For ssca2, we vary the number of nodes in the graph. Short
transactions govern the performance of ssca2 (the left graph
in Figure 3(h)). The increase in working-set size has little or no
impact on application performance because only a small portion
of time is spent in transactions. Also, differences in capacity-
induced aborts over commits among the policies only appear
for small working-set size (the right graph in Figure 3(h)).

The results in this section highlight the challenges faced by
Intel’s TSX on the STAMP benchmark suite. An analysis re-
veals that 70% to 80% of the aborts in STAMP are due to the ar-
chitecture, not the application: (e.g., page faults, system calls).
In programs with short run times, these kinds of aborts appear
to be have a dominant effect in the experiments, limiting the
scalability of applications.

6. Tuning the Serialization Policies

Eigenbench was designed to study TM properties and thus do
not account for changes in the parameters of the fallback policy
used in the HTM system to provide forward-progress guarantee.
However, an interesting question is whether the parameters in
these policies affect performance. For instance, what should be
the maximum number of retries in the SerControl policy used
for the experiments described in Section 4.2? To address this
question we built a tool, called htm-pBuilder, that acts as a
wrapper over Eigenbench to allow independent exploration of
the parameters of a given fallback policy. This tool takes as
input a set of values for transaction properties and parameters
and tailors fallback policies accordingly. The tool then auto-
matically generates code for the various combinations of trans-
action properties and policy parameters, executes the code, and
reports results. The following sections presents new insights,
gained from the experiments performed with htm-pBuilder, into
the tuning of the SerControl policy.

6.1. The effect of the Maximum Number of Retries

Section 4.2 described a systematic exploration of the charac-
teristics of Intel’s TSX. That exploration set the TM properties
to a baseline configuration and then varied a single TM property
at a time while allowing for a maximum of 20 retries in the Ser-
Control policy. That threshold was obtained empirically as the
best average result for a series of experiments with the RMS-
TM [16] and STAMP benchmarks. Section 4.2 experiments are
repeated in this section, but this time we use the htm-pBuilder
tool to vary the maximum number of retries. These new ex-
periments reveal that in applications with low-to-moderate con-
tention a higher threshold value results in better performance
while in applications with high contention this threshold should
remain close to 20.

The experiments reported in Figure 4 support this ob-
servation. For Figure 4(a) the working-set is fixed at 32
Kbytes/thread and the write-ratio is 0.1 (pollution = 10%) —

thus the contention level is low. The gradient plot reports the
performance when the transaction length and the number of re-
tries are varied. There is a significant performance change when
the number of retries is greater than 20 for both small and large
transactions. A comparison with Figure 1(a) on Section 4.2,
where the number of retries was fix at 20, confirms that for that
setting better performance is limited to transaction lengths be-
tween 30 and 60 words. In Figure 4(b) the transaction length is
fixed at 50 words and the write-ratio is 0.1. The performance
drop for 256 KBytes/thread when the maximum number of re-
tries is equal 20, thus confirming the result in Figure 1(c) on
Section 4.2. However the exploration with htm-pBuilder re-
veals that better performance can be obtained for larger work-
sets if the maximum number of retries is increased.

A similar experiment, not reported here, explored the per-
formance for different levels of contention when the maximum
number of retries varies. This experiment revealed that, when
the contention is high, increasing the number of retries does
not improve performance to the same extent as in the low-
contention case. This experimental result is most likely because
of the limited data-cache line size in Intel’s TSX. Thus, for high
contention it is preferable to keep the retry threshold close to 20,
or even less, to reduce the total number of aborts.

6.2. The Effect of Serialization on Capacity Aborts

To prevent frequent aborts because of capacity overflow, the
SerControl policy serializes a transaction that has suffered two
consecutive capacity aborts. The idea is that a capacity abort
may be caused by competing transactions vying for the same
storage resources. The htm-pBuilder facilitates an experimental
evaluation of this strategy. Figure 4(c) shows the performance
gradient when varying the transactional length and the num-
ber of consecutive capacity aborts allowed before the aborted
transaction is serialized. The retry threshold utilized was 20,
the working-set were 32 Kbytes/thread and the write ration was
10%. These transaction properties allow comparisons with the
results reported in Section 4.2. The experiment revealed that
the strategy was correct but, perhaps, adjusting this value to 3
or 4 could be a better solution.

6.3. Applying the new findings to the STAMP benchmark suite

The experiments reported in Sections 6.1 and 6.2 used a set of
synthetic programs generated by Eigenbench. A practical ques-
tion is whether the finding that a higher value for the maximum
number of retries can be beneficial applies to actual bench-
marks. To answer this question, this section studies that finding
in STAMP benchmarks.

This study varied the maximum number of retries from 20
to 90 in all STAMP benchmarks. The only benchmark where a
significant change in performance is observed is genome. The
graph in Figure 3(e) in Section 5 indicates that the performance

Figure 4: Two-dimensional Analysis with Eigenbench and SerControl

(a) Transaction Length X Retries (32 Kbytes/thread;(b) Working-set size X Retries (50-word transactions;(c) Transaction Length X Capacity (32 Kbytes/thread;

write ratio = 0.1) write ratio = 0.1)

N
=}
S

4 4096

write ratio = 0.1; 20 retries)

-

@

=]
T

1024

-

o

=]
T

-

N

o
T

256

-

N

=]
T

-

o

<]
T

64

80

Tx Length (#Words)

16
60 -

Work-set size (#KBytes/thread)

40 —

20 -

0 1 1 1 1 1 1 1 1 Lo 1
0 10 20 30 40 50 60 70 80 90 0

Max Number of Retries

of genome is sensitive to transaction length. Figure 5 compares
the speedup, over sequential execution, for maximum number
of retries of 20 and 90. A value of 90 yields the best perfor-
mance, but there is no significant difference for values above
70. The shape on the graph for 90 retries show that, although
the performance had a small drop for lowest number of seg-
ments, it maintains almost constant, regardless of the number
of segments, thus confirming the observations in the graph on
Figure 4(a).

Figure 5: Study of maximum retries with STAMP

T T
Genome w/ 20 Retries —@—

Genome w/ 90 Retries —li—
35 I T-T

w
T
i

2.5

Speedup over sequential

\

)

1 1 ! 1
10t 102 103 104
Number of Segments (KB)

103

6.4. Avoiding the lemming effect

The strategy adopted in the fallback policy is to retry the ex-
ecution of the transaction — with or without a time delay — to
attempt to complete the transaction execution speculatively. In
the face of persisting failure, a transaction must be completed
by running it in a non-speculative execution mode. A common
solution is to acquire a global lock to prevent other transactions
from committing concurrently. However, the acquisition of a
lock by a transaction causes every other transaction to abort.

10 20 30 40

Max Number of Retries

10

4 140 T T T T T T T 4

120

3.5

Tx Length (#Words)

2.5

0 | | | | | | |

50 60 70 80 90 1 2 3 4 5 6 7 8 9

Max aborts due Capacity

This can cause a chain effect, also known as the lemming effect,
where the aborted transactions also try to acquire the lock [17].

An alternative technique to the single global lock strategy is
to use an auxiliary lock to prevent this lemming effect[18]. The
idea is to guard the global lock acquisition with another lock.
Aborted transactions have to acquire this auxiliary lock before
serializing. This auxiliary lock is not added to the read set of
transactions, thus avoiding the chain reaction effect.

In this experiment the auxiliary lock is a ticket lock. The
ticket lock works as follows. Two memory locations - a queue
ticket and a dequeue ticket — are accessed atomically. Initially
both locations contain the value O to indicate that the ticket is
not held. When a transaction needs to serialize its execution, it
atomically reads and then increments the queue ticket. It then
atomically compares the queue ticket that it read with the de-
queue ticket’s value. If they are the same, the transaction is
permitted to try to obtain the global lock. If they are not the
same, then another transaction must already be acquiring, or
holds, the global lock and this transaction must busy wait or
yield. When a transaction releases the global lock, it atomically
increments the dequeue ticket thus allowing the next waiting
transaction to acquire the global lock.

The experiment reported in Figure 6 used the SerControl po-
licy with at most 20 retries. For a transaction length of 30 words
the overhead of the use of the ticket lock resulted in a per-
formance degradation. With a larger transaction length of 70
words the ticket lock results in a small performance improve-
ment over the standard single-global-lock solution.

Figure 6: Study of the use of ticket lock to mitigate lemming effect using Eigenbench

(a) Transaction Length = 30 words (120 bytes)

4 T T T T T T T T

35

Speedup over sequential

25

Without ticket lock —4—
W\th t[ckeg Iock‘

90 100

10 20 30 40 50 60 70 80
Write-Ratio (%)

6.5. Reproducing the Performance Behaviour of Applications

Applications usually have a mix of various transaction types
and exhibit complex memory access patterns. One of the advan-
tages of Eigenbench, that extends to htm-pBuilder, is the abil-
ity to mimic real applications by measuring the appropriate TM
values and then mapping these values to eigen characteristics.
These characteristics can be obtained via instrumentation-based
profilling, simulation or analysis of the source code. However,
htm-pBuilder has more expressive power than Eigenbench and
allows developers to produce faster and more accurate assess-
ments of the behaviour of HTM applications.

For instance, htm-pBuilder can be used to predict the per-
formance of an application, originally synchronized using with
locks, when it is re-written to use TM for synchronization.
Htm-pBuilder can also help answer questions such as: (a)
whether it is preferable to convert multiple lock acquisitions
or critical sections into a single transactional region; or (b) if
it is better amortize the overhead necessary to execute a trans-
action; or (c) whether it is preferable to maintain transactions
with smaller footprint to reduce wasted work.

Htm-pBuilder can also be used to improve existing applica-
tions that use TM by enabling the evaluation of potential mod-
ifications without needing to prototype, thus reducing develop-
ment time and cost. In our experiments, we used htm-pBuilder
to emulate genome and intruder through instrumentation in
fallback policy. These applications were executed with the tai-
lored policy guided by scripts generated by htm-pBuilder to col-
lect the size (measured in number of clock cycles) of dynamic
transactions that commit. Clustering these results revealed the
different types of static transactions. Then, new instrumenta-
tions of the fallback policy collected the write-ratio and tem-
poral locality, counting the number and frequency of different
locations (i.e. cache lines) touched by the transactions. With
these results, we could emulate both applications and, from
these emulations, we executed the programs to measure perfor-
mance. Finally, we made some changes in the parameters (e.g.,
size of static transactions) to reflect hypothetical modifications

11

(b) Transaction Length = 70 words (280 bytes)

4

M g S

Speedup over sequential

Without ticket lock —4—
) Wi‘th tick‘et \ock‘

90 100

10 20 30 40 50 60 70 80
Write-Ratio (%)

and executed again the emulated applications to estimate the
impact on performance due to the proposed modifications.

7. Related Work

Yoo et. al. in [5] presents an evaluation of Intel’s TSX for
High-Performance Computing. They claim that the first imple-
mentation of HTM in Haswell processors has significant per-
formance potential. Using benchmarks and applications, they
investigate some preliminary techniques to best utilize Intel’s
TSX, in such as lockset elision and transactional coarsening,
but they do not provide library-level support for TM.8

Wang et al. presents an Intel’s TSX performance character-
ization using a simple array-access microbenchmark [6]. They
identify several important trends such as the relationships be-
tween transaction size, write ratio, retry count, transaction abort
rate and performance. This study offers a more detailed study
of the limits of TSX. It also introduces the SerControl policy
that outperforms both a simple MaxRetry and the backing-off
policy.

Diegues and Romano introduce a method to automatically
tune the number of attempts to reschedule a transaction in In-
tel’s TSX [19]. Their method is motivated by the observation
that no single configuration of the software fallback policy can
perform efficiently in every workload and application. Their
policy, Tuner, uses Upper Confidence Bounds (UCB) to select
a strategy to adjust the number of retries given to a transac-
tion when a capacity abort occurs. The goal is to try to dis-
tinguish between transient capacity failures caused by tempo-
rary cache addressing issues and persistent capacity failures
caused by excessive amounts of required speculative state. The
double-check in SerControl is a simple heuristic that attempts
to achieve the same effect. Diegues and Romano used an ex-
ploration technique similar to a hill climbing/gradient descent

8We are currently integrating the proposed SerControl policy within the
libitm, the TM library of the GCC compiler.

search to tune the number of attempts, a problem not explored
in this work.

Calciu et al. present a novel hybrid transactional memory
(HyTM), called Invyswell, that uses hardware transactions from
Haswell’s RTM in conjunction with software transactions from
a heavily modified design of InvalSTM [22], an STM designed
to provide scalability and performance for large transactions
with notable contention [20]. As our results show, Haswell’s
RTM performs best for small transactions with low contention,
as it imposes no instrumentation overhead in fallback policies.
On the other hand, InvalSTM performs best for large transac-
tions with high contention, because it can make highly informed
contention management decisions through its commit-time in-
validation process. Although Calciu ef al. show that Invswell
performance compares favourably to most STMs and HTMs,
this kind of hybrid solution is beyond the scope of the proposed
work.

8. Conclusion

Transactional memory is a natural fit for multi-core architec-
tures, but the success of transactional memory will be partially
determined by the quality of early implementations. This evalu-
ation shows that the best-effort transactional memory provided
by Intel’s Haswell is simple and capable of improving perfor-
mance over a variety of workloads. However, performance
can depend strongly on the software support systems. While
transaction footprint and working-set size constraints dictate
the range of effective transactions, choices made in the lock
fallback policy can considerably affect performance, especially
when capacity-limited transactions are executed. The dynamic
nature of the cache means that the capacity-aborted signal is
not a completely reliable indicator that a transaction will not
complete. This observation is supported by the success of the
SerControl fallback policy, which allows transactions that suf-
fer capacity aborts to retry. A unique evaluation of transaction
footprint and working-set size through input modification of the
STAMP benchmarks confirms that the best-effort nature and ca-
pacity limitations of Intel’s HTM underscores that TM is not a
catch-all solution to parallel synchronization.

Acknowledgment

The authors would like to thank the anonymous reviewers for
the insightful comments. This work is supported under grant
2013/08293-7, Sao Paulo Research Foundation (FAPESP) and
by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

[1] S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, K. Olukotun,
Eigenbench: A simple exploration tool for orthogonal TM characteris-
tics, in: The IEEE International Symposium on Workload Characteriza-
tion (IISWC), 2010, pp. 1-11.

12

[2]

[3]

[4]

[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Schindewolf, B. Bihari, J. Gyllenhaal, M. Schulz, A. Wang, W. Karl,
What scientific applications can benefit from hardware transactional
memory?, in: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, SC ’12, Los
Alamitos, CA, USA, 2012, pp. 90:1-90:11.

Intel Corporation, Chapter 12: Intel’s Transactional Synchroniza-
tion Extensions (TSX) Recommendations, http://www.intel.
com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html
2013).

C. C. Minh, J. Chung, C. Kozyrakis, K. Olukotun, STAMP: Stanford
Transactional Applications for Multi-Processing, in: The IEEE Interna-
tional Symposium on Workload Characterization (IISWC), Seattle, WA,
USA, 2008, pp. 35-46.

R. M. Yoo, C. J. Hughes, K. Lai, R. Rajwar, Performance evaluation of
intel® transactional synchronization extensions for high-performance
computing, in: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, SC *13, New
York, NY, USA, 2013, pp. 19:1-19:11.

M. D. Wang, M. Burcea, L. Li, S. Sharifymoghaddam, G. Steffan,
C. Amza, Exploring the performance and programmability design space
of hardware transactional memory, in: The ACM SIGPLAN Workshop
on Languages, Compilers, and Hardware Support for Transactional Com-
puting (TRANSACT), Raleigh, NC, USA, 2014.

M. Herlihy, J. E. B. Moss, Transactional memory: architectural support
for lock-free data structures, in: International Symposium on Computer
Architecture (ISCA), ACM, San Diego, California, USA, 1993, pp. 289—
300.

K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, D. A. Wood, LogTM:
Log-based transactional memory, in: International Symposium on High-
Performance Computer Architecture, IEEE Computer Society, Austin,
Texas, USA, 2006, pp. 254-265.

J. Chung, L. Yen, S. Diestelhorst, M. Pohlack, M. Hohmuth, D. Christie,
D. Grossman, ASF: AMD64 extension for lock-free data structures and
transactional memory, in: International Symposium on Microarchitecture
(MICRO), Atlanta, Georgia, USA, 2010, pp. 39-50.

L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, K. Olukotun,
Transactional memory coherence and consistency, in: International Sym-
posium on Computer Architecture (ISCA), IEEE Computer Society,
Mnchen, Germany, 2004, pp. 102—-113.

L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, D. A. Wood, LogTM-SE: Decoupling hardware trans-
actional memory from caches, in: International Symposium on High-
Performance Computer Architecture, Phoenix, Arizona, USA, 2007, pp.
261-272.

A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Sil-
vera, M. Michael, Evaluation of blue gene/q hardware support for trans-
actional memories, in: International Conference on Parallel Architectures
and Compilation Techniques, PACT’ 12, ACM, Minneapolis, Minnesota,
USA, 2012, pp. 127-136.

J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, D. A.
Wood, Performance pathologies in hardware transactional memory, in:
International Symposium on Computer Architecture (ISCA), 2007, pp.
81-91.

L. Ceze, J. Tuck, J. Torrellas, C. Cascaval, Bulk disambiguation of spec-
ulative threads in multiprocessors, in: International Symposium on Com-
puter Architecture (ISCA), IEEE Computer Society, 2006, pp. 227-238.
J. R. Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and
Delaunay Triangulator, in: M. C. Lin, D. Manocha (Eds.), Applied Com-
putational Geometry: Towards Geometric Engineering, Vol. 1148 of Lec-
ture Notes in Computer Science, Springer-Verlag, 1996, pp. 203-222.

G. Kestor, S. Stipic, O. Unsal, A. Cristal, M. Valero, RMS-TM: A trans-
actional memory benchmark for recognition, mining and synthesis appli-
cations, in: The ACM SIGPLAN Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing (TRANSACT), Salt
Lake City, Utah, USA, 2009.

D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco, W. Mesard, M. Moir,

(Jul.

(18]

[19]

[20]

(21]

(22]

K. Moore, D. Nussbaum, Applications of the adaptive transactional mem-
ory test platform, in: TRANSACT °08: 3rd Workshop on Transactional
Computing, 2008.

Y. Afek, A. Levy, A. Morrison, Programming with hardware lock elision,
in: Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 13, ACM, New York, NY,
USA, 2013, pp. 295-296. doi:10.1145/2442516.2442552.

N. Diegues, P. Romano, Self-tuning intel transactional synchronization
extensions, in: 11th International Conference on Autonomic Computing
(ICAC 14), USENIX Association, Philadelphia, PA, 2014.

Calciu, Irina and Gottschlich, Justin and Shpeisman, Tatiana and Pokam,
Gilles and Herlihy, Maurice, Invyswell: A Hybrid Transactional Mem-
ory for Haswell’s Restricted Transactional Memory, in Proceedings of the
23rd International Conference on Parallel Architectures and Compilation,
2014, pp. 187-200.

P. Felber, C. Fetzer, P. Marlier, and T. Riegel, Time-based software trans-
actional memory, IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 12, pp. 17931807, 2010.

J. E. Gottschlich, M. Vachharajani, and J. G. Siek. An efficient Software
Transactional Memory using commit-time invalidation. In Proceedings
of the International Symposium on Code Generation and Optimization
(CGO), April 2010.

13

