
Software Transactional Memory (STM) systems have poor performance 
under high contention scenarios. Since many transactions compete for 
the same data, most of them are aborted, wasting processor runtime. 
Contention management policies are typically used to avoid that, but 
they are passive approaches as they wait for an abort to happen so 
they can take action. More proactive approaches have emerged, trying 
to predict when a transaction is likely to abort so its execution 
can be delayed. Such techniques are limited, as they do not replace 
the doomed transaction by another or, when they do, they rely on the 
operating system for that, having little or no control on which 
transaction should run. In this paper we propose LUTS, a Lightweight 
User-Level Transaction Scheduler, which is based on an execution 
context record mechanism. Unlike other techniques, LUTS provides the 
means for selecting another transaction to run in parallel, thus 
improving system throughput. Moreover, it avoids most of the issues 
caused by pseudo parallelism, as it only launches as many system-
level threads as the number of available processor cores. We discuss 
LUTS design and present three conflict-avoidance heuristics built 
around LUTS scheduling capabilities. Experimental results, conducted 
with STMBench7 and STAMP benchmark suites, show LUTS efficiency when 
running high contention applications and how conflict-avoidance 
heuristics can improve STM performance even more. In fact, our 
transaction scheduling techniques are capable of improving program 
performance even in overloaded scenarios.


