
Dynamic Binary Translation (DBT) has been used as an approach to 
transparently run code on different architectures and has generally 
made use of runtime information to perform effective dynamic 
compiler optimization. Dynamic optimization techniques are hard to 
design, as they have to improve code performance under stringent 
runtime constraints. In this paper we present preliminary work on a 
code optimization technique called Hole Allocation. Our goal with 
this paper is to introduce and highlight its potential, and to point 
new directions for improvement. Hole Allocation uses runtime 
information, collected by DBTs, to identify free register ranges 
(holes) which could be target of register promotion. Preliminary 
experiments conducted with the SPEC CPU2000 benchmark, using only 
one memory access pattern, shows that Hole Allocation can achieve, 
for some program runs, moderate speedup-ups, but also reveal that 
performance can suffer in some cases, and needs to be addressed.


