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Abstract

In this paper, we present a novel system modeling language which
targets primarily the development of source-level multiprocessor
memory aware optimizations. In contrast to previous system mod-
eling approaches this approach tries to model the whole system and
especially the memory hierarchy in a structural and semantically
accessible way. Previous approaches primarily support generation
of simulators or retargetable code selectors and thus concentrate
on pure behavioral models or describe only the processor instruc-
tion set in a semantically accessible way, A simple, database-like,
interface is offered to the optimization developer, which in con-
junction with the MACCv2 framework enables rapid development
of source-level architecture independent optimizations.

Categories and Subject Descriptors B3.3 [Memory Structures]:
Performance Analysis and Design Aids; D.2.2 [Design Tools and
Techniques]: Computer-aided software engineering; C0 [Gen-
eral]: System architectures; C4 [Performance of Systems]: Mod-
eling techniques

General Terms Algorithms, Languages, Design, Performance

Keywords Architecture description, component, channel, config-
uration, definition, energy models, framework

1. Introduction

In the past years, a huge amount of work has been done in the
area of optimized program compilation. Especially lots of effort has
been spent for optimizations which take particular properties of the
memory subsystem into account. Nevertheless, the usual approach
in that area is to use optimization-specific memory configuration
descriptions, or even incorporate this information into the optimizer
code. On the one side, this allows for a compact and simple mem-
ory description, on the other side combining various optimizations
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becomes difficult, porting them to other architectures even more.
Furthermore, a consistent memory model would be beneficial for
ensuring comparable results.

Among all the system modeling languages developed recently,
some of them incorporate a memory model. In almost all cases,
the target application is generation of simulators, transformation
to hardware description languages or code generator generation,
which does not fit well with source-level optimizations. The first
class of languages implement a behavioral model, which can be
transformed into executable code on the host platform and thus
supporting simulation. Transformations to HDLs require primar-
ily structural information. A fixed set of properties per component
is required to interpret the description and translate it to the lower
level HDL. Furthermore, due to the fact, that a complete and syn-
thesizable hardware description has to be generated, a high level of
detailed information is required right from the beginning of the sys-
tem specification. In contrast to this, for memory aware optimiza-
tions usually a quite abstract system model is sufficient. Finally,
models for code generator generators concentrate on the internal
structure and instruction set of the processor.

Therefore, we propose a combined structural and semantical
description at system level. On the one side, it offers a structural
modeling approach for the system designer. But on the other side, a
database-like interface is presented to the optimizations designer. It
supports model refinement and requires only limited effort for the
initial abstract system model.

The structure of this paper is as follows: It starts with an
overview of requirements imposed by the intended application
field. The next section provides references to related work and
puts this approach in relation to these publications. Section 4 de-
scribes details of the system model and concentrates on the key
feature of this system description, which allows the database-like
access to the system model properties. In Section 5 the MaCCv2
framework is introduced. MaCCv2 provides the surrounding infras-
tructure which incorporates our system description model. After-
wards, an application example is shown in Section 6. This example
demonstrates an implementation of the static scratchpad allocation
technique. This optimization technique was implemented in a fully
architecture independent way.

In the following results section we are going to show that the
completely different method of accessing system and memory hier-
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archy properties does provide same quality results as the simulation
based approach in the modeled MPARM SoC.

The paper closes with a conclusion. As a result, we can summa-
rize that our approach qualifies as a viable way for rapid develop-
ment of memory aware source-level optimization techniques which
can adopt to different architectures without the need of developer
interaction.

2. Requirements

The memory description proposed in this paper has to fulfill a set
of requirements. These requirements were chosen according to the
needs of current memory optimization techniques and available ar-
chitectures. Furthermore, the memory description should be suffi-
ciently generic to be applicable to future memory architectures. For
example a fixed set of memory component types would be an unac-
ceptable limitation in this context. Therefore, the proposed model-
ing approach provides in addition to the predefined components and
channels an open API to extend the set of available building blocks.
Finally, it has to permit the design of a memory description in a top
down approach in terms of complexity and precision, without los-
ing compatibility to optimization techniques which do not require
such a high level of details. The refinement of memory models in-
cludes the possibility to add aspects of interest as required. The
remaining model and the API should not be affected by the amount
of aspects (i.e. latencies, energy values etc.) provided by the model
for a particular memory device type. Referring to Section 4 this ap-
proach does not impose limitations on number or type of provided
component properties.

Since the memory description should be accessible from within
the optimization techniques, an API has to be provided. An object-
oriented representation of the memory model – as used in this ap-
proach – fits best the requirements of current programming style. In
conjunction with the previously stated requirement for extensibil-
ity, this results in a challenging task, which was successfully tack-
led through the integration into the MaCCv2 framework, shortly
described in Section 5. Previous experiences show that beside pure
simulation-oriented models a query-oriented database-like inter-
face is also required. Especially for fully compile-time based op-
timizations, this is the key to a portable implementation. Current
MPSoCs are designed in various configurations: Starting from sim-
ple shared memory systems consisting of a set of equal comput-
ing elements, up to heterogeneous systems with separated address
spaces. This requires a model which goes beyond the description of
memory devices but also incorporates an interconnection model.

Finally, a graphical user interface which allows for an easy de-
sign and modification of memory descriptions would be beneficial
for a rapid development process.

3. Related Work

According to the classification of systemmodeling languages along
the abstraction level as shown in Figure 1, the description language
presented in this paper can be assigned to the PMS level. Processor-
Memory-Switch models were introduced by Bell and Newell in
[5]. They describe the system at an abstract level where the main
building blocks are the system components (i.e. processors and
memories) and the interconnection between them.

Various architecture description languages (ADLs) have been
developed in recent years. One comprehensive approach to classify
them is by the main application target. A first application target is
the automatic transformation into a hardware description language.
This helps in automating hardware development as well as in short-
ening the development cycle, where precise simulators can be de-
rived in advance from the HDL representation of the system. A
second main application target is the automatic generation of de-

Figure 1. System modeling levels

velopment tools like compilers, assemblers and linkers. Both ap-
plication targets impose almost disjoint requirements on the ADL.
On the one side, hardware description requires precise structural
information, on the other side, automatic tool generation requires a
behavioral and semantic description of the system.

LISA [12] is an ADL which targets primarily at the automatic
generation of application-specific hardware and corresponding
simulators and low-level tools. Primary architectural targets are
signal processing and generic irregular single processor architec-
tures. The language has been extended later towards automatic
compiler generation. To accomplish this task, an additional seman-
tic instruction set model has been added [7]. Since the main target
of LISA is the cycle-true description of the DSP, neither a sophisti-
cated system model nor detailed memory models exist. The timing
model integrated into LISA concentrates on the specification of
the pipeline behavior. There is no energy model incorporated into
LISA.

Another ADL developed recently is ArchC [4]. ArchC was de-
signed to support processor architecture description. While the lan-
guage has evolved also the possibility to design memory hierarchies
has been added. Similar to LISA, ArchC also covers the struc-
tural and behavioral view of a system model. Since ArchC uses
the SystemC language, which provides extensions to C++ for de-
scription of timing and concurrency, ArchC models are described
in C++ code. On the positive side, this opens a possibility to de-
scribe a large scale of different systems, on the negative side, it is
really hard to extract any semantic meaning from the model, once it
comes to other tasks than simulator generation. The SystemC lan-
guage offers all the expression possibilities of the C++ language.
This is perfect for simulation, since this allows for compiled sim-
ulation which is the fastest simulation method available. But even
the task of extracting timing information out of such a model in ad-
vance without imposing any restrictions to the modeling style is a
almost intractable problem. Closely related to ArchC is PDesigner
[2]. Basically, it is a graphical editor which can be used for intuitive
component based development of ArchC system models.

Another group of system modeling languages are specialized
system descriptions targeting mapping of applications on MPSoCs.
As examples, references to the ADL used in DEADALUS [8] or the
hardware platform description in the CIC based retargetable paral-
lel programming framework for MPSoC [14] are given. In general,
these system descriptions are from the structural point of view sim-
ilar to the one presented in this paper. Nevertheless, significant dif-
ferences can be observed when it comes to the annotation of com-
ponent and channel properties. These approaches suffer from the
fact that changes to the properties of one component need to be an-
notated in several places of the system description. An example for
such an annotation would be the energy consumption of a mem-
ory component. In contrast to our approach, a change of such value
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will affect the per-access energy values annotated to processing el-
ements. In general this will require user interaction, and in-depth
system knowledge to precompute these values.

EXPRESSION has been developed in the late 90’s [11]. EX-
PRESSION aims primarily at automatic generation of software de-
velopment tools. The motivation for this language was faster design
space exploration on a single processor of the SoC. To accomplish
this task, EXPRESSION describes the system in a structural and
behavioral way. In contrast to the previous languages, EXPRES-
SION offers an explicit memory model. There is a fixed set of
parameters which can be used to describe properties of memories
available to the processor. On the downside of this ADL, there is
no method to convert the description into an HDL for automatic
generation of processor hardware.

A slightly different application scenario is specified for the TDL
[13] language. The primary goal of this language is to support re-
targetable postpass optimizations at assembly level. This is what
comes closest to the approach presented in this paper. TDL includes
a structural description of the resources present in the system. This
includes memories and corresponding cache hierarchies. Further-
more, behavioral description of the instruction set is the second
key part of this language. Nevertheless, there are significant differ-
ences to our ADL. The semantical information in the resource sec-
tion does not allow for modeling structural dependencies between
memories, furthermore only a single processor based memory hi-
erarchies can be described.

Finally, there exists a vast variety of other ADLs. As examples,
references to hardware related ADLs like nML [9], ISDL [10] and
MIMOLA [17] are given. All of them do not focus on development
of memory hierarchy aware source code transformations. The com-
mon goals are simulation, HDL extraction or compiler generation.
None of them satisfies all the requirements imposed in the previ-
ous section. In a broader scope, the set of software related ADLs
also has to be take into account. Examples in this class of ADLs
are Wright [3] or Darwin [16]. In contrast to this approach, these
ADLs concentrate on description of the architecture of the applica-
tion instead of the platform the application is being executed on.

4. Model

The novel architecture description model presented in this paper
can be classified as a structural PMS model. In contrast to previ-
ous ADLs where a detailed model has to be developed in advance,
in this approach only high-level structural information has to be
provided for a new architecture. Once tools require more details,
these can be added to the model without losing backward compat-
ibility. Furthermore, the main application target of this ADL is the
development of code optimizations at source-level which leverage
the knowledge of the memory hierarchy. This implies the acces-
sibility of the system properties while the optimizations are being
executed. In contrast to ADLs with simulation as the main target,
system descriptions can contain pure behavioral parts, which are
passed through the generator tool without any further semantical
analysis. ADLs designed for compiler and development tool gener-
ation contain semantical information, but this is usually limited to
the description of the instruction set.

The ADL proposed in this paper provides a structural model of
the memory hierarchy, enriched with semantical information. This
model allows for a database-like access to the system description,
where the optimizations can query system properties which are re-
quired to apply them on different architectures. The approach pre-
sented in this paper has been developed as part of the MaCCv2
compiler framework. Therefore, it smoothly integrates within this
framework. The memory description is part of the complete sys-
tem and application description. The memory description presented
here is defined as an object oriented C++ API provided to the op-

Figure 2. System Model.

timization or analysis tool. The actual format the memory descrip-
tion is stored in, is not part of this specification. Due to the strong
relation between the MaCCv2 framework and the ICD-C compiler
tools [1], the current implementation uses an XML based storage
method. ICD-C is a compiler development platform. It represents
C-code as a source-level abstract syntax tree and offers a code se-
lector interface and a wide range of transformation and optimiza-
tion techniques.

Basically, the system description consists of a set of channels
and components. Figure 2 depicts the top-level structure of a sys-
tem description. Channels represent the interconnections between
components. Examples are: Usual busses, point-to-point links or
some other kind of abstract direct connections. The last one could
be useful in the case the processor register file is also modeled as
a memory component. Registers are part of the processor architec-
ture, but they have similar restrictions in terms of maximum num-
ber of parallel accesses and delays as usual memories. Therefore,
it is a valid model to separate the processing unit and the register
file and connect them through a direct link. Components are self-
contained parts of the system which have to exchange data with
each other. The most common types of components are processing
units and various kinds of memories. Additional components like
ASIPs or DMA units may be included in the model. In most cases,
components will map to particular parts of the on-chip hardware.
Nevertheless, this is not required. Also, hard disks or even software-
controlled data exchange between processors could be modeled as
a virtual memory device.

From the structural point of view, the system models described
in our modeling language are similar to the one used in languages
for simulator modeling. Therefore, a translation to another system
description language is possible. For example, from our system
model a SystemC skeleton can be generated. Due to the high-level
representation and the missing behavioral information, it is not
possible to generate a fully specified SystemCmodel. Nevertheless,
if future tools would require automatic translation to SystemC it is
possible to attach behavioral information as user extended data to
the system model. A particular translation tool which can handle
this data could generate full fledged SystemC models.

A typical architectural example is shown in Figure 3. Multiple
processing units with a local memory and dedicated caches are
connected to a shared main memory. The basic blocks of this
structural view are components, which are equipped with ports that
are connected to channels. Components may initiate requests or
may be a target for requests initiated by others. Structural memory
hierarchies may be modeled as shown for the cache components. In
that case, the component has multiple ports which are connected to
different channels. On the one side, it is the target for requests on
the other side, it issues requests to the next level.

Going deeper into the details, Figure 4 shows the concept of
address space translation and mappings. Each component has a
set of address spaces. They may have different properties. For
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Figure 3. Interconnection Model.

Figure 4. Mapping Model.

example, a processing unit having a Harvard architecture will have
at least two address spaces; one for instructions and a second one
for data. Another example could be a processing unit which has a
local memory that is not part of the main address space and has to
be accessed through auxiliary instructions.

Address spaces are not limited to be part of access initiating
components like processing units, but also target components have
at least one address space. In the case of a simple memory, this
would be a plain range starting at 0 and going up to the size of this
memory.

Besides components, channels have also a set of address spaces
assigned to them. They represent which kinds of accesses may be
transported over that particular channel. The mapping between ad-
dress spaces of components and channels is performed at the con-
nection port. Each port has a set of mapping rules which translate
between component address spaces and channel address spaces and
vice versa. It is possible to have mapping rules for the same address
space at different ports. This allows for modeling systems which
have a bus based interface to the main memory and a fast dedicated
interface to a local scratchpad memory, while both are located in
the same address space.

The memory description is presented to the application as an ob-
ject graph with nodes representing components and channels and
edges representing connections. Traversing this graph allows the
application to collect structural properties of a system. Each ob-
ject in this graph may have user defined attributes assigned to it.
This resembles the often used approach of direct annotation of re-
quired component properties, present in other modeling languages.
This is feasible for attributes which are solely related to a particu-
lar component. An example would be the number of banks a mem-
ory consist of. An example of less suitable value type would be
the per-access energy consumption annotated to a processing unit.
This value depends on several system properties. On the one side,

Figure 5. Routing Model.

in general there will be no single value, but a set of values which
depend on the number of memories present in the system. On the
other side, when performing design space exploration, the update
of these values is a non-trivial task. It requires user interaction and
in-depth system knowledge. When exploring the effects of changes
in the energy consumption of a particular memory, in general sev-
eral values across the whole system description may need an up-
date. To avoid this error-prone overhead, the proposed model offers
a generic mechanism to collect component and chanel properties.
Its basic item is the access-request. It is similar to a database query.
The application (i.e. the optimization) issues an access to a compo-
nent object—usually a processing unit—and the implementation of
the model ensures to route the query through the structural descrip-
tion. After the access has reached another component, the target
component processes the request and fills in the information it can
provide according to the request. Figure 5 shows the access pro-
cessing scheme built into this memory description model. Which
kind of information is being returned depends on the actual im-
plementation of this component. Usually, energy values, latencies
or data values will be returned. In the case a memory device can
provide its data content for a particular access, this query based
approach could resemble also simulation based approaches. But in
contrast to them, not only the actual value is being returned, but
also information about which kind of additional accesses were re-
quired to get this value. For example, an access directed to a cache
will provide information about the accesses to the next level caused
by a cache miss.

Each request has a basic set of properties which are necessary
to route the request through the model:

• Address range.

• Number of bytes.

• Alignment.

• Access mode (e.g. ”IFETCH”).

These properties are required in each request to ensure that the
model can resemble in the routing algorithm the paths the request
would have taken in an actual hardware instance.

Further, an arbitrary set of requested aspects may be attached to
the access request. In most cases this will be:

• Energy values

• Latencies / Cycle values

• Throughput

• Data values

The implementation of an optimization technique issues an ac-
cess request to the component which would initiate the access in
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a physical environment. The access request is targeted for an ad-
dress range in a particular address space and access mode (i.e.
”IFETCH”). In the first step, the port to which the access should
be routed is looked up. As mentioned before, each port has a set
of mapping rules. Each rule states from which address space to
which one the access can be mapped, and for which address range
in the ingress address space it is valid for. After an applicable rule
has been found, this port is used for further routing. Basically, the
access is being translated and issued to the channel the port is con-
nected to. The next step forwards the access to the target port. The
procedure is the same as described before for the component. A
port with a suitable mapping rule is being searched. After mapping
the access to the target component address space, the access request
is being forwarded to that component for service.

Throughout that request chain, three places exist where re-
quested properties may be updated; namely at the initiating compo-
nent, the channel and the targeted component. If at one place, par-
ticular properties can not be provided by the implementation, this is
visible in the request, too. Assuming the case that each component
and channel on the path can provide a particular aspect value, an
update operation has to be performed at each place. For cumulative
values like cycle counts the update operation will reduces into an
addition. Other types of aspects may need other update operations
(i.e. for throughput this could be the computation of a minimum
value). Since computation of aspect values is performed in reverse
order, starting at the target component, even more complex update
functions which need knowledge of other aspect values from par-
tial results may be performed. A common example for this kind
of complex update functions would be the computation of the en-
ergy consumption of a processing unit. A practical example for
this complex update function occurs in the energy model for the
MPARM processor, used in the evaluation part of this paper. This
processor’s energy model provides two energy states; namely run-
ning and idling. When accessing a memory the processor consumes
some energy to setup the access and than idles until the resulting
value is available, still consuming energy. Therefore, the computa-
tion has to take into account the number of cycles the access will
take. Since the values are computed bottom up, the amount of cy-
cles the memory and interconnect requires to perform a particular
access has already been computed and is known to the update func-
tion at the processor level.

In general, multiple target components will be addressed in an
access request. For example, in a system consisting of a main mem-
ory and a scratchpad memory, an access request covering a suf-
ficient wide address range could target both memories. Therefore,
the reply contains information about every path a request has taken.
While the request is posted, the user can choose which path should
be the primary result. Currently between best-case or worst-case
answers can be choosen. In the example, one path would target the
scratchpad, the other would target the main memory. In general,
both paths will result in different values for each aspect. Scratch-
pads require less cycles and less energy than the main memory.
Therefore, aspect values of scratchpad would be the best-case an-
swer, while the aspect values of main memory would be the worst-
case answer.

Furthermore, in general an access request may exceed the maxi-
mal width per access of involved components and channels. There-
fore, an access request can be split into an access sequence while
being routed through the system description. The model ensures
proper accumulation of values in that case. Nevertheless, each
step and each transformation involved in the access processing is
recorded. Therefore, besides the accumulated values, detailed anal-
ysis of the effects which lead to the result can be performed.

The detailed access processing history allows to compute pre-
cise values for components with sophisticated aspect models. An

example for this kind of components are DRAMmemories. In gen-
eral the access times and energy consumption of DRAM memories
vary depending on the sequence of previously performed accesses.
At the first view, this may contradict the static approach proposed
in this paper. This approach requires the computation of aspect val-
ues to be stateless across multiple queries, otherwise the resulting
values would depend on the control flow of the optimization algo-
rithm performing the queries. Obviously, resulting in completely
unreliable values. To support this kind of memories, the approach
presented here exploits the possibility to model explicit access se-
quences. Either the user (i.e. the optimization algorithm) may place
queries which do not consist of a single access, but specify an ac-
cess sequence. Alternatively, a sequence may be build implicitly,
as described in previous paragraph. This would enable a DRAM
memory to treat subsequent accesses differently computing more
precise value. Furthermore, the knowledge of the purpose of the
query may be taken into account to improve the result quality. If
the optimization algorithm needs conservative values, it may ask
for those worst case results. This case is shown in the Example–
Section 6. Another option would be to place a query for the best
case values.

Besides DRAMs, other memory types benefit from this ap-
proach. Caches will in general take sequences into account. Fur-
thermore, specialized memory types optimized for particular access
patterns, like video memories optimized for frame-buffer accesses
or memories organized in multiple banks, where accesses can be
interleaved, will have the option to provide values with respect to
an access sequence.

5. Framework

The system description model is tightly integrated into theMaCCv2
framework. MaCCv2 is intended as a platform for the rapid devel-
opment of source-level memory aware optimization techniques.
The key features are:

• The integration of a scalable structural PMS-level system
model.

• Database-like interface to the system model. The properties of
the system model are accessible to the optimization developer
at runtime.

• Integration of the application code into system model. The
ICD-C code representation is used to attach program code to
processing units.

• A graphical user interface for system modeling. An Eclipse
based plug-in has been developed, which allows to modify the
system model from within this widely used IDE.

• A template for optimizations and analysis tool development
is provided. This enables the development of interchangeable
tools which can be combined and reused in further optimization
techniques or upcoming architectures.

• Interface to backend tools (i.e. compilers, linkers, simulators).

• Configuration and event notification interfaces.

The first two features are an integral part of the system model and
the corresponding API. They have been presented in the previous
section. Furthermore, the structural model can be used to solve
the problem of representing program code assignment to particular
processors. Among other properties, each processing unit has one
or more ICD-C based C program code representations assigned
to it. This code is stored in an ICD-C based abstract syntax tree.
Any transformation or optimization available for ICD-C can be
performed on program code stored in a MACC system model.
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Figure 6. Graphical user interface.

Figure 7. MaCCv2 example optimization chain.

In the context of the MACCv2 framework, a graphical editor
has been integrated into the Eclipse IDE. Figure 6 shows the ed-
itor. It can be used to define new system models or alter exiting
models (e.g. change the scratchpad size or configuration param-
eters). Furthermore, the framework provides methods for ordered
execution of transformation, analysis and optimization techniques.
Each implementation may specify requirements which task has to
be performed first. The usual application scenario for this feature
is shown in Figure 7. The blocks in this figure represent transfor-
mation, analysis and optimization tasks which have been combined
to form a source-level optimizer. Finally, a rich set of methods is
provided which supports rapid development of optimization tech-
niques and provides an abstraction layer which allows for integra-
tion of those techniques into a comprehensive graphical user inter-
face.

6. Application Example

The example shows a typical approach of implementing a static
scratchpad allocation algorithm in a fully architecture independent
way using the memory model and the MACCv2 framework.

To demonstrate the allocation strategy, we choose a system
model which describes the MPARM [15] system. Figure 8 shows
the model with the default configuration of 4 cores. According to
the original setup, caches have been disabled.

The static scratchpad allocation used for demonstration pur-
poses was presented by Steinke et al. in [18]. Further extension
toward multiprocessor systems has been done by Verma et al. [19].
Basically the approach solves a knapsack problem for each proces-
sor separately using integer linear programming. Without loss of
generality, our example targets energy reduction as the objective. A
set of input parameters is required per processor to formulate the
ILP:

Figure 8. MPARMModel.

• A set of code or data items which can be placed independently
in the main memory or the scratchpad memory. These items are
identified as memory objects in literature. In our example global
variables (i.e. scalars and arrays) and functions are used.

• Size of each memory object.

• Access counts to each memory object.

• Scratchpad size as the limit for the knapsack.

• Energy consumption per main memory access.

• Energy consumption per scratchpad memory access.

The set of movable items can be identified easily in the abstract
syntax tree of the C program provided by ICD-C [1]. The processor
nodes in the systemmodel incorporate the ICD-C based representa-
tion of the program code which is going to be executed at this pro-
cessor. Iterating over the global symbol table provides the names
and references to these objects. Access counts to each of these
memory objects are generated via profiling in MACCv2. From the
point of view of this example optimization, the access count infor-
mation is inherent to the system description. Each MACCv2 based
optimization can specify its requirements, which processing and
analysis steps have to be performed first. In our case, we would
specify the requirement to run the access count generator and size
estimator. The former in turn would employ profiling and simu-
lation to collect this values. Once static analysis methods become
more sophisticated they may replace the profiling step.

In the context of this paper, more interesting are the steps re-
quired to find the architectural properties. Determining them is as
easy as looking up some predefined values, but with the confidence
of always getting precise up to date values without the need for
manual adaption to new platforms. Part of the MACCv2 framework
is an address space analyzer, which provides a mapping list of ad-
dress ranges in the address spaces of an initiator component (i.e.
an ARM processor) and the final target component. The analysis is
performed by default across all memory hierarchy levels, therefore
in the mapping the final target component (i.e. Main memory) will
be visible.

For the architecture shown in Figure 8, a mapping would look
as follows for the first processor:

ARM0.[0x0-0xbfffff] -> MM0.[0x0-0xbfffff]

ARM0.[0x19000000-0x190fffff] -> SHM.[0x0-0xfffff]

ARM0.[0x22000000-0x22002fff] -> SPM0.[0x0-0x2fff]

Similar mappings exist for other processors. According to the
object class in the MACCv2 representation of each target compo-
nent in that list, the scratchpad memory can be identified easily (i.e.
the type of that memory is a derived class of MACC Scratchpad).
In a second step, its size in the processor address space has to be
retrieved. Simple arithmetic operations on the address ranges are
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necessary to compute a size of 12k bytes for our example architec-
ture.

The energy values which are required to compute the gain for
each object for the knapsack formulation can be retrieved in a
similar way. As described in Section 4, the key feature of this model
is to provide system properties on a query based interface. Two sets
of queries are required for this optimization. The first one would be
placed to the address space range of the main memory, the second
one to the range of the scratchpad memory. Each set would collect
three values; for data read, data write and instruction fetch. The
difference of the corresponding values of each set is the gain factor
multiplied by the access counts. All the prerequisites for the ILP
formulation are present now. Solving the ILP will result in a set of
decision variables indicating which memory object has to be placed
on the scratchpad. The final step required in this optimization is to
translate these decision variables into linker hints, which will be
annotated to this particular memory objects directing them either to
the scratchpad or the main memory. The optimization can delegate
the actual compiling and linking process to MACCv2.

7. Results

For the application example presented in the previous section, the
key value directing the ILP solution is the gain which can be
achieved per memory object when moving it to the scratchpad
memory. Therefore, we have compared the computed gain values
of our model to the ones which are achieved by the whole system
simulation in MPARM.

The simulation platform consists of the MPARM SoC simulator
extended with the memory hierarchy simulator MEMSIM [20].
The system configuration defines one processing tile with a 12k
Bytes scratchpad and a 12M Bytes main memory connected via
an AMBA-AHB bus. The energy and latency values for these
memories are configured according to the reference design:

• Scratchpad memory read: 0.0241275682 nJ / 0 WS

• Scratchpad memory write: 0.0080780647 nJ / 0 WS

• Main memory read: 10.6813104793 nJ / 10 WS

• Main memory write: 1.0667890999 nJ / 10 WS

The benchmark application chosen for this comparison was a chain
of matrix operations. In the first step, a matrix A has to be trans-
posed, and in the second step, a second matrix B is added and the
result is stored in another matrix C .

AT = A
T

C = AT + B

All matrix values are 32 bit unsigned integers. Two sets of
experiments have been performed, one with 10 × 10 matrices,
another with 30× 30 matrices.

For our purposes, this benchmark has the advantage that the
access counts to each matrix are fixed and can be determined via
profiling. Table 1 shows the access counts for 10 × 10 matrices
which have been determined in advance.

Matrix Reads Writes
A 100 0
B 100 0
C 0 100

AT 100 100

Table 1. Access counts for 10× 10 matrices.

Corresponding values for 30×30matrices are shown in Table 2.

Matrix Reads Writes
A 900 0
B 900 0
C 0 900

AT 900 900

Table 2. Access counts for 30× 30 matrices.

For each matrix size, we have run the benchmark with all ma-
trices located in the main memory in the MPARM simulator and
retrieved the total energy consumption. This results in an energy
value of 27130.266nJ for the 10× 10 matrix and 231908.203nJ

for the 30× 30 matrix. Afterwards, we have moved each matrix to
the scratchpad memory and got total energy reductions according
to Table 3. This values are the gain factors which could be used in
the ILP formulation presented in previous section.

Matrix 10× 10 30× 30

A 1122.741nJ 10104.672nJ

B 1122.741nJ 10104.672nJ

C 164.459nJ 1480.125nJ

AT 1287.202nJ 11584.812nJ

Table 3. Measured gain per matrix.

The next step consists of computing these values using our
MACC system model without the need for full system simulation.
The model has been designed according to the simulator setup.
The energy and latency values for memories are setup to the same
default values as used for simulation. The interconnection energy
computation is based on work done by Bona et al. [6]. The sub-
sequent values of total energy per access were retrieved with four
access queries. Two queries directed to the scratchpad memory and
two to the main memory, each one for a 4 bytes read and a 4 bytes
write access correspond to the size of the matrix elements.

A typical query consists of only few lines of code; setup, add
aspects, perform query and retrieve value:

MACC_Access *acc=new MACC_SingleAccess(...);

acc->addData(ASPECT_ENERGY);

acc->addData(ASPECT_CYCLES);

acc->queryAccess(AS_WORSTCASE,ASPECT_ENERGY);

val=acc->getValue(ASPECT_ENERGY);

delete acc;

Matrix 10× 10 30× 30

A 1120.457nJ 10084.114nJ

B 1120.457nJ 10084.114nJ

C 164.238nJ 1478.143nJ

AT 1284.695nJ 11562.258nJ

Table 4. MACCv2 computed gain per matrix.

Via these queries, we have retrieved total per access energy
values of 0.0791284nJ per scratchpad read, 0.0630784nJ per
scratchpad write, 11.2837nJ per main memory read and finally
1.70546nJ per main memory write. With these values and the ac-
cess counts, we were able to compute the gain values for each ma-
trix. The values can be found in Table 4. Comparing these values
to the ones generated via full system simulation, we can conclude
that the system modeling approach presented in this paper has the
capability to provide very accurate information about the energy
consumption. The computed results were all less than 0.21% off
compared to the actual values. Furthermore, the results are stable
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along the increased number of accesses, even for the bigger matri-
ces with nine times higher access counts, the divergence remains
almost the same.

Matrix Divergence
A 0.203%
B 0.203%
C 0.134%

AT 0.195%

Table 5. Relative divergence to simulation results.

8. Conclusion

We have presented a novel system modeling approach with the
primary target in support for developing architecture independent
source code optimizations, which can still take advantage of archi-
tectural properties to achieve higher gains. Especially the knowl-
edge of properties of the memory subsystem, enables a wide range
of code optimization opportunities. Together with the query-based
interface of the system model, which is capable of providing in-
stant results, the memory aware optimization techniques can be
guided without the need for time consuming simulation. Further-
more, the implementation of these technique can be fully archi-
tecture independent. Required architecture information is retrieved
from the system model, dependencies on other processing steps
may be specified in a generic way, without the need to relay on
a architecture dependent implementation of those steps.

As shown for the MPARM system model, even with a high level
model which consist only of few building blocks, it is possible to
achieve quite precise results. We have demonstrated that our model
can provide energy values which are less than 0.21% off to the
actual values.

The systemmodeling approach integrates smoothly intoMACCv2
compiler framework which offers a comprehensive infrastruc-
ture for compiler development and in particular for architecture-
independent source-level transformation development.
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