Journal of Systems Architecture 59 (2013) 603-614

Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

An automatic energy consumption characterization of processors using
ArchC

Marcelo Guedes *, Rafael Auler, Liana Duenha, Edson Borin, Rodolfo Azevedo

@ CrossMark

Computer System Laboratory — LSC, University of Campinas — UNICAMP Campinas, Sdo Paulo 13083-852, Brazil

ARTICLE INFO ABSTRACT

Article history:
Available online 13 June 2013

The design complexity of integrated circuits requires techniques that automate and ease common tasks,
allowing developers to keep up with the rapid growth and demand of the industry. This paper presents
acSynth, an integrated framework for development and synthesis based on ArchC ADL descriptions and

Keywords: introduces a new power characterization method at the architectural level. The acSynth is composed of a
ArchC characterization tool used to extract the energy consumption behavior of processors and also of a simu-
acgymh lation method that, after characterization, is able to estimate software energy consumption at high
acsim speeds. Our experimental results show the power figures obtained by the characterization flow of Plasma
acPower o
acPowerGen and Leon3 processors, a MIPS-I and SPARCv8 HDL descriptions, respectively, using two different synthesis
Processor tools: Xilinx Xpower and Altera PowerPlay. The acSynth simulator used these power figures to allow
High-level power analysis at more than 35 million instructions per second in a simulation with small accuracy diver-
Characterization sion and without loss of generality. The system executes large tests in minutes, which would otherwise
Power take years in standard HDL methodologies.

Consumption © 2013 Elsevier B.V. All rights reserved.
Simulation

1. Introduction

The design of a System-on-a-Chip (SoC) requires thorough
assessing of the modules that compose it. In fact, designers must
evaluate the combination of these components in order to select
one from the best subset and discard those from the worst. Fur-
thermore, to reduce system development costs and time, designers
are increasingly using extra processor cores as components, thus
transferring the implementation of hardware features to software.
This increase in core usage for different software workloads re-
quires careful selection of the cores that will be available to run
the software implementation. Besides, designers have a myriad
of processor variations to choose from. Due to the lack of tools to
help the choice of the best design, the designer depends solely
on her experience rather than solid design space exploration, lead-
ing to potentially inefficient overall system designs.

When designing a system, it is critical to know the energy con-
sumption of an extra core. Not only the best choice requires de-
tailed analysis of consumption profiles of different processors,
but a given processor, depending on its power requirements, also
impacts the choice of the other components in the system. Hence

* Corresponding author. Tel.: +55 (19) 3521-5857.
E-mail addresses: marcelo.guedes@Isc.ic.unicamp.br (M. Guedes), rafael.auler@
Isc.ic.unicamp.br (R. Auler), liana.duenha@Isc.is.unicamp.br (L. Duenha), edson@
ic.unicamp.br (E. Borin), rodolfo@ic.unicamp.br (R. Azevedo).

1383-7621/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.05.025

it is important to perform the design space exploration of proces-
sor alternatives. On the other hand, calculating the energy con-
sumption of processors when running a given benchmark
requires long simulation times. The crux of the problem is that tra-
ditional methods requires the simulation of the hardware at the
gate level, after complete design workflow, since the energy con-
sumption is dependent upon the final chip layout. Because it is
inherently slow to tally the energy used in every signal transition,
one efficient strategy to increase power estimation speed is to
back-annotate energy information on a fast simulator devoid of cir-
cuit detail.

In this paper we define a precise methodology for extracting the
energy consumption characteristics of processors on a per-instruction
basis, which allows us to augment a fast Instruction Set Simulator
(ISS) with energy information to efficiently provide power reports.
We also leverage a set of Architecture Description Language (ADL)
tools to perform this task automatically in an architecture agnostic
approach, creating the acSynth workflow. AcSynth aids the de-
signer in the task of choosing the best core for the system needs,
enabling processor energy consumption characterization through
ArchC [1-4], a SystemC-based ADL that easily integrates with other
hardware components to compose the full system.

Designing with ADLs is easier because it describes a processor at
a high level, allowing our method to automatically generate
effective benchmarks for power estimation tailored to stimulate
a specific architecture from the software perspective. After testing

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sysarc.2013.05.025&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.05.025
mailto:marcelo.guedes@lsc.ic.unicamp.br
mailto:rafael.auler@lsc.ic.unicamp.br
mailto:rafael.auler@lsc.ic.unicamp.br
mailto:liana.duenha@lsc.is.unicamp.br
mailto:edson@ic.unicamp.br
mailto:edson@ic.unicamp.br
mailto:rodolfo@ic.unicamp.br
http://dx.doi.org/10.1016/j.sysarc.2013.05.025
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

604 M. Guedes et al./Journal of Systems Architecture 59 (2013) 603-614

the benchmarks, we chose to augment the ArchC instruction set
simulator with power information. Although other instruction-
level power estimation approaches that use ADLs have been
proposed in literature [5,6], they are semi-automatic. This paper
extends Ma et al. [6] and Guedes et al. [7] work to provide an unsu-
pervised, automatic, workflow for easy system design space explo-
ration across different processor architectures, including multicore
architectures. We test our method in 3 different processor-technology
scenarios to show its feasibility.
Our key contributions are:

1. We present a new power characterization method at the
architectural level.

2. We show how to automatically generate the characterization
programs using ADL information, leading to an effective bench-
mark for processor power estimation.

3. We show a proof of concept of this methodology, applying our
framework to the Plasma MIPS-I and SPARCv8 Leon3 processor,
demonstrating its effectiveness.

4. We integrated the existing ArchC simulator generator with
PowerSC library, enabling ArchC power-aware simulation.

5. We developed and reported results for a framework that is
adaptable in the characterization and report generation process,
allowing it to assess a wide range of processors.

This paper is organized as follows. Section 2 discusses the re-
lated work; Section 3 presents an end-to-end acSynth framework
overview, beginning at the low-level power characterization data
until the power model exploration; Section 4 provides experimen-
tal results for the framework and discusses power reports for the
MIPS Plasma and SPARCv8 Leon3 processors using the Mediabench
and Mibench benchmarks with large inputs and acStone bench-
marks comparison with a reference power analysis software;
finally, Section 5 presents our conclusions.

2. Related work

The power wall is one of the main problems that a system de-
signer faces and we aim to help him by automatically creating a
power model for the processor. Power estimation may be per-
formed at several levels, each one involving different trade-offs
of accuracy and speed: transistor level [8], gate level [9], cycle
accurate level [10], instruction set level [5], which includes this
work, and application level [11]. Previous methodology try to cre-
ate a much more detailed power model by using all the hardware
components [12,13], other techniques restrict the power figures to
only a few processor states [14], while others create statistical
power models for a specific workload [15]. We stay in the middle
by using an instruction based power model for processor cores
based on the work of Tiwari et al. [16], making it suitable for eval-
uating large software without a significant impact on precision.

Degalahal et al. [17] point the increasing FPGA market relevance
due to the low non-recurring engineering costs, fitting FPGA solu-
tions ideal for low-to-mid volume products. However, in compari-
son to an ASIC, FPGAs uses more transistor for equivalent hardware
modules. This factor increases the importance of an accurate
power analysis of FPGAs. They developed a tool for this specific
case. They used device-level simulation for architectural modules
characterization, avoiding silicon characterization, and then, simu-
lated benchmark modules and gathered typical FPGA resources uti-
lization. Each resource block was characterized as a single effective
capacitance and, by crossing the characterized capacitance and the
typical average switching activity of 12.5%, they found the subject
FPGA typical design consumption.

Gupta et al. [5] present the closest work to our own and devel-
oped a methodology called Power-ArchC that also uses the ArchC
ISS augmented with per instruction power values obtained by
characterization. Nevertheless, their workflow is not applicable to
a wide range of processors because it is not possible to adapt their
characterization software automatically to different ISAs, a task
that would require an automatic compiler generator since their
characterization software is a benchmark written in a high level
language. Our automatic approach, on the other hand, does not de-
pend on the availability of a cross-compiler that targets the proces-
sor under test and thus could be even used as part of the design
flow of a new processor ISA that lacks such software support. In
contrast to our automatic approach, three instruction level power
characterization (ILPC) campaigns were selected based on software
benchmarks. They compared the energy at instruction level based
on characterized data with energy at gate level simulation and the
maximum error introduced with the ISS technique was 21%.

3. The acSynth framework

Our power estimation methodology through the acSynth frame-
work integrates the following ArchC tools:

acSim is a simulator generator for processors described using
the architecture description language (ADL) ArchC. An ArchC pro-
cessor model comprises an instruction set architecture description
file (ISA), and an architectural description file (ARCH) informing
state storage elements and cache configuration. The tool uses this
high-level description to generate a SystemC model. SystemC is a
system description language (SDL) whose models can be compiled
with the help of a C++ compiler to generate efficient hardware sim-
ulators. Rigo et al. [4] provide an extensive description of the ArchC
ADL model and its simulator.

acPower is a power estimation tool developed by Ma et al. [6]
that generates power reports from software running over the
ArchC simulator. The acPower tool is a Tiwari’s Method application
embedded into the ArchC environment. This work was extended to
interface with acSynth [18] and PowerSC [19].

acPowerGen is our automatic characterization code generator
that provides programs required to extract power information
from RTL.

ArchC and acSim are open-source and publicly available. The
acPowerGen, acPower and acSynth will be available through the
ArchC website [1].

3.1. Overview

ArchC has been designed at the Computer Systems Laboratory
(LSC) in the Institute of Computing at the University of Campinas.
The acSynth tool integrates several ArchC tools, providing a frame-
work capable of performing fast high-level power analysis.

The high-level power analysis flow is depicted in Fig. 1. It re-
quires a high level ArchC model and a register transfer list (RTL)
description of the processor. The flow can be organized in two
main processes: the characterization process and the simulation
process.

The characterization process starts by invoking a synthesis CAD
tool, generating a circuit netlist out of the processor RTL-synthesizable
hardware description. Typical tools used for this task are Synopsys
Design Compiler [20], Xilinx ISE [21] or Altera Quartus [22]. From
the circuit netlist it is possible to elaborate a back-annotation with
transistor-level power information. A testbench is structured to re-
ceive the processor netlist as a device under test, allowing simula-
tions with characterization softwares as inputs. Then, the circuit
netlist can be simulated using Mentor Graphics Modelsim [23],
generating switching activity files for power analysis tools such

M. Guedes et al./Journal of Systems Architecture 59 (2013) 603-614 605

RTL Processor

Simulation
Model

Characterization

acPower

Reports

Power Tables

Fig. 1. The acSynth characterization flow report elaboration. The characterization
process is detailed in Fig. 2. The simulation model structure is detailed in Fig. 4.

as Xilinx Xpower, Altera PowerPlay or Synopsys RTL Power Estima-
tion flow.

The softwares are automatically generated by our acPowerGen
tool. They reproduce the main concepts presented by Tiwari
et al. [24,16] when synthesizing the test software. Tiwari shows
that the average energy consumption of a characterization pro-
gram with a loop of several instructions with the same opcode
but randomized operands can be used as a power per instruction
approximation. In this way, we can obtain a consistent measure
of the average power per instruction. By repeating this process to
all different instructions, we conclude the energy characterization
per instruction and we are able to estimate power using processor
frequency and instruction per cycles (IPC) information. This meth-
od provides an instruction-based energy consumption analysis and
can be used in order to characterize the entire processor instruc-
tion set.

The next step, the simulation process, is executed after the RTL
power analysis is done. The instruction-based energy consumption
information is automatically integrated into the ArchC instruction
set simulator by the acSim tool. In this step, the designer uses the
power information obtained from the characterization flow into
the SystemC simulation. The PowerSC library is the responsible
for bringing the data into the model.

The final analysis step consists of the information gathering and
report generation. The acSynth final result is a power report and an
energy consumption report, enabling a fast power-aware design
space exploration and assessment. Each step in Fig. 1 is detailed
in the next sections.

3.2. Processor synthesis and power characterization

Fig. 2 provides an overview of the steps to obtain power charac-
terization. We use a CAD RTL suite to generate a back-annotated
HDL processor description. Any synthesizer could be used in this
step.

Afterwards, the circuit is integrated within a testbench struc-
ture and test codes are executed to extract power reports for each
processor instruction of interest. We use acPowerGen to generate a
set of basic programs to be used in the testbench structure. The
acPowerGen tool, described in details in Section 3.3, relies on the
assembly language description available on ArchC models to auto-
matically generate these programs. As a result, a set of waveform
simulation files is generated, one for each instruction.

The waveform simulation files are input to power simulation
tools to extract power reports. We have used the Xilinx Xpower
and Altera PowerPlay tools in our experiments.

RTL Processor
(back-annotation)

Testbench RTL Llevel
Structure Simulator
i RTL Level Power Tables
Programs Reports (CsV)

Fig. 2. Characterization process for power information extraction. The RTL proces-
sor is synthesized and then, simulated using automatically generated assembly
code.

3.3. Test code generation

One important step in the characterization process is to auto-
matically generate the set of source code programs to characterize
the instruction based energy consumption model. This allows the
workflow to be fast and do not rely on designer decisions that
may slow down the design space exploration. The test code gener-
ation process begins with the ArchC architecture description,
which contains information about the processor ISA. For each
instruction, the user specifies its behavior using a tree-like seman-
tic description. In that way, acPowerGen knows exactly what each
instruction does.

Then, the acPowerGen uses a high-level description of the algo-
rithm that will run on the processor in order to assess the energy
consumption of an instruction. This algorithm is based on Tiwari’s
method, testing the same opcode with different operands. How-
ever, it is impractical to generate a large number of instances of
the same instruction since it may not fit in the memory module
for the simulated processor. Instead, a loop based code structure
is generated, similar to Fig. 3a. One sample piece of MIPS-I assem-
bly code is shown in Fig. 3b. These are the first ten lines from
instruction addi characterization software. The immediate num-
ber is randomly generated.

The key challenge to transforming the high-level description of
the algorithm lies in the fact that it is not trivial to generate a loop
for an unknown instruction set. We overcome this limitation using
the semantic information describing each processor instruction in
ArchC model. In this way, we gathered sufficient information
needed for deducing how a loop may be built and use an

Label:

globl main

main:

Test Body addi $7, $6, -26519
addi $19, $17, 23807
addi $10, $12, 7977
addi $13, $11, 16882
addi $3, $6, 124
addi $2, $20, 10232
addi $8, $7, 17293
addi $22, $3, -15821

.0
End Test

(b) First ten lines of an addi charac-
terization software body

Loop Control

(a) Code generation template

Fig. 3. Loop based code structure.

606 M. Guedes et al./Journal of Systems Architecture 59 (2013) 603-614

implementation search process to try instructions until we can
prove they correspond to the loop, similar to a simple automatic
theorem prover used for the ArchC automatic compiler back-end
generation [25].

The processor-agnostic algorithm involves allocating a specific
machine register to hold the base induction variable and generat-
ing instructions to update this register and comparing to check if
it met a predefined threshold. In this way, we are able to control
how many times the test body is executed.

The last step consists in generating the loop body of the test
that contains the instruction to be tested. There is a trade-off be-
tween instruction memory consumption versus reduction of the
loop control code overhead. We do not want to measure the energy
consumption of the loop control instructions, so the larger the
number of instructions in the loop body compared to the number
of instructions in the loop control, the smaller is this unwanted
contribution to the total power measurement.

The loop body contains a single instruction type repeated sev-
eral times using random operands. The test code generator knows
exactly how many operands a given instruction has and their types
using the information of the tree-like semantic description. The
generator emits the instruction using random operands whether
it uses a register number or an immediate value as operand. In this
way, we seek to avoid biasing the power measurements to specific
operands. All the information used to generate this is available on
the ArchC architecture description files and does not require the
designer intervention.

3.4. Feedback

The synthesis flow outlined in Section 3.2 generates a processor
circuit netlist for a known architecture. Additionally, the character-
ization process generates reports and data that can now be reused
in simulations, saving time and computational resources. Once a
processor architecture is described in ArchC, it opens the possibil-
ity to use acSim to generate its ISS for simulation and automatic
testbench generation. In this way, we can feed characterized data
back into the simulation system.

Once data is available, it is possible to use the information into
the simulation process. Fig. 4 shows how our framework enables
the integration of the ArchC generated simulator with the power
information extracted from the previous steps. We used two inputs
for it. The first input is the ArchC ISA description files. The second
input is the power data generated by the characterization flow, or-
ganized as a table file. The acPower power tables used CSV files
seeking portability.

The characterization and the simulation processes integration
happen when acSim is called using acpower parameter, generat-
ing a SystemC simulation environment referring PowerSC, acStat

and power analysis algorithms.
PowerSC
Library

acSim with == = = =
PacPower | | systemC Model ‘
| PEEIEET | With PowerSC
Support | —
) S —— High-level
acPower Power Reports

Power Tables

Fig. 4. Power report extraction through SystemC simulation model. The acSynth
framework brings power information feedback through acPower, PowerSC and
SystemC processor integration.

PowerSC Library. PowerSC is a SystemC extension aiming at the
gathering of switching activity [19]. It is a complete framework de-
signed to collect information from any SystemC functional descrip-
tion. As ArchC generates a SystemC processor description, it is an
eligible candidate to PowerSC workflow, which abstracts from
the user a large share of the process. We have used PowerSC ver-
sion 0.91.

The acPower Library. The acPower is a library of functions
incorpored into ArchC. The acPower was developed to enable the
power analysis of ArchC processor modules. Although acPower
previous work allowed Tiwari’s analysis over some ArchC models,
acPower was not fully integrated into the ArchC development flow
until its integration discussed here.

We integrated the acPower source code into acStat library. We
integrated into the PowerSC core the previous activity collect
phase, creating a new tool for power exploration. Moreover, the
integrated system shows that other activity-based power analysis
algorithms can be easily applied.

The acStat Integrator. The acStat is a key library performing the
communication of three fundamental ArchC tools: the acSim ISS
generator, the PowerSC library, and the acPower library. The acStat
is invoked from the processor simulation environment generated
by acSim with acPower parameter. It configures PowerSC state-
ments to collect activity, brings data from CSV external database
file into acPower algorithms and then feeds the activity with the
algorithms, resulting in energy and/or power reports.

Added to the advantages of the workflow automation, it is now
also possible to collect energy consumption versus time, a result
not possible using the previous acPower implementation because
it was a semi-automatic approach and lacked access to the ISS
source code.

3.5. Power model

The inputs to the power model workflow are a synthesis script,
and a set of testbenches in Verilog and Assembly language. Each of
these parts can be generated without user supervision as explained
below.

Synthesis Script The acSynth creates a synthesis script based on
the template files previously generated. All file names and param-
eters are extracted from the baseline ArchC model and we also
instantiate the extra components for the testbenches (e.g. a small
memory to hold the binary software).

Verilog Testbenches the Verilog testbenches includes instruction
memory and data memory and an external execution controller for
dynamic instruction characterization purposes.

Assembly Language Programs for a faster power characterization
phase, acSynth creates several assembly programs based on the
ArchC assembly specification as described in Section 3.3. The
instructions fields are fully described and acSynth generates a large
set of instructions to enable a good coverage of the behavior value.
Each instruction is explored in one different program using the
Tiwari’s approach to instruction power estimation. Each assembly
program has one thousand instructions, all using the operation we
are interested in, but with random parameters. The number of
instructions was determined empirically, presenting a good num-
ber of random parameters restrained in a relative small program.
There are two execution modes, normal and forced. In normal
mode, the assembly program is executed as it is. In forced mode,
an explicit loop control is added into the testbench, executing
the code forcefully in sequence and then returning to the first
instruction to run again. The forced mode is specially important
to simulate branches and jumps where random parameters would
generate erratic behavior.

The number of interactions can be easily controlled. However,
as expected, there is a threshold where it is worthless going further

M. Guedes et al./Journal of Systems Architecture 59 (2013) 603-614 607

because it increases processing time without significant changes in
estimation. We choose one hundred iterations summing ten thou-
sand instructions per analysis after empirical experiments.

The instruction based power model is created by collecting and
computing the power figure for each instruction. The energy of an
instruction is determined by the total energy spent in its character-
ization program divided by the number of occurrences of the
instruction in this program. This data is then stored in a CSV file that
can be used by acPower in the high level simulator. We augmented
acPower to send the energy consumption directly to the PowerSC li-
brary so as to collect all energy consumption from a platform.

4. Experimental results

Our experiment’s main goal is to assess the effectiveness of the
acSynth methodology in different scenarios. Two important inputs
guide our power estimation workflow: the subject processor and
its implementation technology. The processor architecture, con-
tained in a high level ADL description file, constrains how we will
generate the test benchmarks and what instructions we may use.
The processor RTL implementation will be used to synthesize a test
circuit to the characterization step. Finally, the technology steers
how the synthesis tool implements the RTL description into real
hardware and thus is a major factor in power estimation.

We test two architectures, MIPS-1 and SPARCvS. The underlying
microarchitectural implementation of these are the Plasma and the
Leon3 core, respectively. In addition to testing two different pro-
cessors, for the Plasma core we also test two different hardware
implementation technologies: Xilinx FPGAs and Altera FPGAs.

To complete the test, after finishing the characterization step in
3 scenarios, we also run Mediabench and Mibench benchmarks,
which are too big to run using a traditional power estimation flow,
on our fast simulator augmented with data from the characteriza-
tion step, generating full power reports for real software. For small
programs, as the acStone benchmark suite, we compare our simu-
lator with traditional power estimation flow using Altera and Xi-
linx tools, which operate at the circuit node transition level. This
allows us to report the precision of our approach. In all experi-
ments, we only consider the dynamic power because this is the
only power factor that is affected by the applications running in
the simulations.

4.1. Plasma processor

Plasma is a HDL implementation of the MIPS-I architecture [26].
Its developers maintain a functional server on a Xilinx FPGA plat-
form using the RTOS Plasma operating system to validate its prac-
tical application. We choose Plasma because it’s an open core
project, simple to use and thoroughly validated core. The Plasma
CPU has an interrupt controller, UART, memory controller and
Ethernet controller. However, we are only interested in the MIPS-
[processor core energy consumption and, therefore, in our exper-
iments we used only the mlite_cpu subsystem corresponding to
the CPU core. The mlite_cpu includes only the processor pipeline.
In this way, we maintain consistence with the usage of this infor-
mation in the ArchC ISS, which is responsible for accounting solely
for the processor core energy consumption.

We generate a back-annotated core description that is then
integrated into a testbench infrastructure. Tiwari's method enables
the generation of the test software and the final products are wave-
form files.

4.1.1. Xilinx platform
Table 1 shows the energy consumption characterization of the
Plasma instruction set on a Xilinx 351200 at 100 MHz. The

information in Table 1 is the dynamic energy consumption and
therefore it does not account for quiescent power, leakage power
or internal power. This static fraction does not depend on the
software. Our method aims at capturing how different instruction
categories uses different power levels. The key of the method lies
in the usage of random operands in the testbenches used to esti-
mate the power of each instruction. As a side effect, Tiwari’s meth-
od leads to upper bounds in the energy consumption, since in real
software the circuit nodes rarely have the amount of transitions
provoked by random stimuli.

For example, the MIPS sw instruction, responsible for storing a
single word to the memory, needs 5.4 nJ on average, considering
only the dynamic power, being the highest energy consumption
value found for MIPS instructions using Xilinx technologies. It is
noteworthy that memory operations are more sensitive to the ran-
dom operands technique than other regular ALU operations be-
cause the memory access datapath uses more power - it involves
higher switching activity and communication outside the core
module boundaries. Since the characterization table is used to esti-
mate the energy consumption of larger software at fast speeds,
this, in turn, leads to an increased overestimation of the energy
consumption of regular, non-random, loads and stores that are pre-
dominant in software, and it is the cause of larger errors reported
in this section. The same was observed in the Altera experiment
and will be discussed in Section 4.1.2. However, this is not a ran-
dom error as addressed in common error theory that uses the nor-
mal probability density function to model errors, but it is, instead,
a deviation that is generally - but not guaranteed to be -
overestimated.

Nevertheless, the sw and 1w energy per instruction information
can be better estimated by using a cache memory simulation. Ca-
ches could be analyzed with the usage of other tools like CACTI
[27] and integrated into the final model. In contrast with these
power-hungry instructions, the results show that the nop instruc-
tion, which is the MIPS no-operator, consumes only 0.5 nJ, the low-
est energy consumption. We also estimated the stall cycle
consumption of 0.206 nJ, which is measured by running the simu-
lation with memory stall control activated.

Using the ArchC ISS augmented with the per instruction power
information of Table 1, we measured the energy consumption of
the acStone [1], Mibench [28] and Mediabench [29] benchmarks.
The average simulation rate was 35 Millions Instructions per Sec-
ond (MIPS) running on a desktop computer with a 2.66 GHz Intel
Core2 Quad Q9450 processor.

Table 1
Dynamic energy consumption of Plasma instructions at 100 MHz.
Instruction E (nJ]) Instruction E (n]) Instruction E (nJ)
add 1.865 jr 4.932 sb 4.930
addi 1.791 1b 4.326 sh 5.244
addiu 1.791 1lbu 2.130 s11 0.832
addu 1.744 1lh 4.480 sllv 0.897
and 0.889 lhu 2418 slt 1371
andi 1.051 lui 1.090 slti 1.260
beq 3.977 1w 3.221 sltiu 1.256
bgez 3.977 1wl 3.221 sltu 1.364
bgezal 3.977 lwr 3.221 sra 0.814
bgtz 3.977 mfhi 0.598 srav 0.899
blez 3.977 mflo 0.597 srl 0.810
bltz 3.977 mthi 1.017 srlv 0.891
bltzal 3.977 mtlo 0.949 sub 1.763
bne 3.977 mult 1.457 subu 1.761
div 2.858 multu 1.421 sw 5.427
divu 2.781 nop 0.545 swl 5.427
j 3.412 nor 1.622 swr 5.427
jal 3.805 or 0.977 xor 1.720
jalr 5.027 ori 1.125 xori 1.518

608 M. Guedes et al./Journal of Systems Architecture 59 (2013) 603-614

Table 2
Mediabench benchmarks: estimation of energy consumption.

Program Instr (M) Power (mW) Energy (m]) tsim (S) ~ tsim RTL (days)
timing 852 175 1489 26 726
rawcaudio 7 174 13 <1 6
rawdaudio 6 181 11 <1 5
toast 221 216 477 7 188
untoast 61 195 119 2 52
cjpeg 17 211 35 1 14
djpeg 5 194 10 <1 4
mpeg2encode 11474 208 23,832 364 9772
mpeg2decode 3772 219 8248 134 3212
pegwit gen 13 181 23 <1 11
pegwit enc 31 182 57 1 27
pegwit dec 17 188 33 1 15

The results for the Mediabench benchmark are presented in
Table 2 and for Mibench in Table 3. We tested all inputs of
Mibench, but we only show large input cases due to space limita-
tions. For example, in Table 2 we show that the mpeg2encode
Mediabench program ran the longest instruction trace with
11,474 million instructions, consumed approximately 24] of en-
ergy, the processor operated using 208mW of dynamic power on
average, the total simulation time necessary to generate its power
estimation was around 6 min and, if this same program were ana-
lyzed using the traditional power estimation flow with the XPower
tool, we estimate that it would be necessary 9,772 days to com-
plete the power analysis, an impractical solution. We also see that
the highest power in Mediabench programs is used when running
the mpeg2decode program, reaching 219 mW. On the other hand,
Table 3 shows that, for Mibench programs, the crc32 program ex-
ceeds 250 mW, demonstrating how the core energy consumption
varies with the workload depending on the algorithm, even when
using the same processor and technology.

We also performed simulations using 7 parallel applications
from the ParMiBench [30] benchmarks. These applications are
parallel versions of a subset of Mibench. By evaluating acSynth in
parallel benchmarks, we show that the methodology is reproduc-
ible for multicore platforms. In Table 4, we present the results
for a single core MIPS platform running ParMiBench, and the
results for true multicore platforms are reserved for Section 4.3.

The classic RTL workflow time estimations of Tables 2,3 are cal-
culated using the average speed to generate power reports for a
reference program, the sieve of Eratosthenes prime number finder,
configured to find all prime numbers up to 100. This program exe-
cutes around 8000 instructions. The Modelsim simulation rate was
only 13.3 instructions per second, a difference of six orders of mag-
nitude when comparing to the average ArchC ISS augmented with
instruction energy consumption information.

These results show that the default approach using ASIC simu-
lation and power analyzers such as the XPower tool takes much
longer under the same conditions and same computational power.
On the other hand, the acSynth flow requires a one-time character-
ization step that takes less than 2 h and a half using the same com-
putational power for simulations. It needs to be done once for each
processor-technology. After the characterization process, the
ArchC simulation took less than 10 ms to execute the same sieve
of Eratosthenes program. In this program, the difference between
the power estimation obtained with the traditional flow and the
power estimation using the fast acSynth flow was less than 6%, a
small error in exchange for an almost instantaneous result.

We also tested the acStone benchmark, presented in Table 6.!
The acStone benchmark has a collection of testing software and it

! We showed only a few programs here due to space restrictions. All acStone
benchmark applications were executed.

can be downloaded from the ArchC site [1]. This benchmark is
geared at validating processor designs using small programs. Since
they are usually very small, we used acStone to estimate power
using not only the acSynth methodology, but also using the standard
RTL power estimation flow with the XPower tool. Hence, instead of
estimating the RTL simulation time as in the Mediabench and Mi-
bench benchmarks, for acStone it was possible to provide real values
for the simulation times of the XPower approach and also present
the difference of the energy consumption reported by acSynth versus
the XPower.

Since our characterization process is based on a RTL simulation
of our characterization software, when using the per-instruction
fast estimation we lose precision in comparison with the RTL ap-
proach and thus we say that the difference between the powers re-
ported by acSynth and by XPower is our error. For example, Table 6
shows that the 015.const program executed 37 instructions, the
acSynth workflow measured the core power as 135.85 mW while
XPower measured it to be 157.61 mW and thus the error was
13.81%. It is possible to see that, as we argued earlier that acSynth
usually overestimates, the majority of power report numbers from
acSynth are larger than those from XPower.

In early simulations, the largest errors appear in multiplication
and division benchmarks. The reason is that these benchmarks suf-
fered a large number of stall cycles due to data hazards, events that
are ignored by an ISS fast simulator. When running the character-
ization programs of mult and div, there are no such data hazards,
since the MIPS 10 and hi registers cannot be used as direct oper-
ands of other mult or div instructions. Without data hazards, the
pipeline executes without pause, with increased power, while the
presence of data hazards slows down the pipeline, lowering power.

When tallying total energy consumption in a program by using
a fixed value of energy consumption for long arithmetic instruc-
tions such as multiplication and division, we observe two effects:
first, total energy consumption is underestimated, since real pro-
grams often have stalls, which accounts for extra cycles using en-
ergy while idling, and second, the final average power is
overestimated, since real programs with stalls introduce idle cycles
with low activity, which reduces energy consumption per unit of
time. For example, acSynth estimated the power used in 051.mul
to be 251.14 mW because that would make sense if all computa-
tion was done without interruption at a high pace. This leads to
the error of 145.54% between acSim and Modelsim simulations
for 051.mul.

For these special cases, to explain the nature of the discondance
between our simulation and the RTL gate-level model, we per-
formed additional simulations considering mult and div instruc-
tions as macros to be expanded as multiple instructions in our
simulator: the instruction itself and additional “stall” instructions,
accounting for the additional cycles with stall energy. In this
approach, the error dropped considerably compared to previous

M. Guedes et al./Journal of Systems Architecture 59 (2013) 603-614

Table 3
Mibench benchmarks: estimation of energy consumption.

609

Program Instr (M) Power (mW) Energy (m]) tsim (S) ~ tgim RTL (days)
Consumer
lame 94,315 207.68 195,872 3047 80,324
cjpeg 109 209.74 229 3 93
djpeg 29 207.54 61 1 25
Automotive
basicmath 22,269 208.70 46,476 765 18,966
bitcnts 684 195.69 1339 19 583
gsort 989 216.12 2138 31 843
susan cor 45 203.90 91 1 38
susan edg 177 187.96 333 5 151
susan smo 423 155.55 659 12 361
Network
dijkstra 285 192.36 549 8 243
patricia 1831 211.86 3879 65 1559
Office
search 7 244.05 17 <1 6
Security
rijndael dec 361 208.34 752 12 308
rijndael enc 351 206.88 726 12 299
sha 136 181.73 247 4 116
Telecommunication
adpcm rawc 689 172.87 1191 24 587
adpcm rawd 539 179.06 965 20 459
adpcm tim 688 174.76 1203 25 586
crc_32 615 250.60 1541 22 524
fft 32k 15,244 205.19 31,280 534 12,983
fft inv 32k 14,750 204.74 30,201 474 12,562
gsm toast 1763 216.22 3813 58 1502
gsm unt 523 199.27 1043 17 446
Table 4
ParMiBench benchmarks: estimation of energy consumption in single-MIPS platforms.
Program Instr (M) Power (mW) Energy (mJ) tsim (S) ~ tsim RTL (days)
basicmath 5 220 303 <2 4
dijkstra 5 179 234 <2 4
fft 92 205 5330 26 78
sha 1 212 64 <1 <1
stringsearch 116 208 7072 34 98
susan-corners 83 223 5798 26 70
susan-edges 198 199 11,343 57 168
susan-smoothing 93 233 6990 30 79

Table 5
Simulation with acStone and error evaluation (Plasma Altera).

Program Instr acSynth (mW) PowerPlay (mW) Error (%)
018.const 56 63.20 57.98 9.01
031.add 259 66.89 65.69 1.83
051.mul 96 66.05 65.88 0.27
061.div 192 69.77 67.33 3.62
071.bool 281 65.45 67.77 3.42
111.if 318 69.12 66.65 3.71
121.loop 959 70.28 65.67 8.55
132.call 271 69.07 64.41 7.24
142.array 94,771 62.50 65.74 493

results. Previously, 051.mul executed 96 instructions, but with this
approach the acSim simulation tallies 342 instructions, many of
them being stalls. Although the simulation still reports a similar
amount of energy spent, the estimated power is lower due to the
larger denominator (number of instructions). In this scenario, the
error for 051.mul is only 1.86%. The same was observed in all ac-
Stone simulations with high use of mult and div instructions. In
Table 6 the special cases are marked with an asterisk. This strategy
can be used in the final model of Plasma to preserve simulation

Table 6

Simulation with acStone and error evaluation (Plasma Xilinx).
Program Instr acSynth (mW) Xpower (mW) Error (%)
011.const 34 131.45 146.77 10.44
021.cast 44 185.59 186.75 0.62
031.add 259 263.80 240.71 9.59
041.sub 259 265.18 243.22 9.03
051.mul* 96 101.19 102.28 1.86
061.div* 192 124.10 107.52 5.94
071.bool 281 266.90 240.51 10.97
081.shift 183 282.18 235.6 19.77
111.f 318 260.25 2284 13.94
112.if 318 231.12 222.97 3.66
121.loop 959 256.30 223.72 14.56
131.call 111 242.97 2559 5.05
142.array 94,771 168.39 128.71 30.83

speed, although a straightforward solution would be to enhance
the ArchC framework with cycle-accurate information, at the cost

of slowing down simulation.

610 M. Guedes et al./Journal of Systems Architecture 59 (2013) 603-614

On the other hand, while long delay instructions may cause
noticeable distortions due to long-standing data hazards, it is
important to note that arithmetic instructions usually account for
only a fraction of the total instructions of a program. AcStone is
not composed of real programs, but small tests built to repeat
the execution of a specific class of instructions. In real benchmarks,
the use of multiplication and division instructions is much more
sparse and using a single value of energy for all multiplication
and division instructions is enough to estimate power reasonably,
even for Plasma in this Xilinx platform. We evaluate this hypothe-
sis by comparing the results of RTL Modelsim simulation of a re-
duced Mediabench cjpeg benchmark and the acSynth simulation
environment. Since the RTL simulation takes too long, we reduced
the size of the input image to a small 50 x 33 pixels BMP image,
making the simulation time feasible. The number of executed
instructions was less than 700,000. The simulation reported the
power to be 240 mW. The same software was used in acSynth
framework, without changing the mult and div to macros as in
the previous strategy. Even simulating in the presence of the char-
acterization problem discussed before, the error was much smaller.
The ArchC simulation reported 252 mW, a relative error of 15.68%.

For other platforms, as we will present shortly, this problem is
less intense.

Excluding the special situation presented by multiplication and
division, the analysis with MIPS-I and Xilinx tool set presented er-
ror between 0.02% and 61.05%, with 91% of the total number of
analyzed cases presenting errors with less than or equal to 30%.

Fig. 5 presents instantaneous powers graphics for Mediabench
and Mibench benchmarks. Besides computing energy consumption
and final power estimates, the acSynth also produces instanta-
neous power graphics, which help the designer understanding
the correlation between algorithms and the energy consumption.

4.1.2. Altera platform

We performed the same experiments with a Plasma processor
in an Altera Cyclone-V 5CGXFC7C7F23C8 FPGA at 25 MHz. The
development flow was the same as the previous process presented
for Xilinx, with exception of the configuration of an acSynth file to
use the Altera tools, Quartus and PowerPlay, instead of the Xilinx
tools. Similarly, the Plasma code needed to be refactored to use
memories compatible with the Altera FPGA family.

The simulations for the Altera characterization step were per-
formed at the HDL level. The characterization of the system con-
sumed approximately one hour. For Altera, we estimated stall
cycles to consume 1.64 nJ (versus 0.206 n] of Xilinx), which is mea-
sured by running the simulation with memory stall control acti-
vated. The characterization of dynamic energy consumption are
not presented here due to space limitations. In the limits, j energy
was characterized with 3.93 nJ and NOP with 1.94 n]J.

We included the per instruction power information into the
ArchC ISS and we measured the energy consumption of ArchC
benchmarks. For Mibench, all the tests were made but only the re-
sults for large inputs are presented due to space limitations. The

mips1 mediabench jpeg

240
230
220

210 /\
200 \ /
B /

0 0.020.040.060.08 0.1 0.120.140.16

190
180

estimate of RTL simulation time was equally high. As expected,
acSynth still keeps a large gain in simulation time for a different
platform and a different workflow.

Both load and store instructions presented high-energy re-
sults again. The instruction 1w shows 2.98n] of energy-
per-instruction and sw, 3.56 nJ. We can also notice that branches
instructions consume more energy due to higher switching activi-
ties over input and output pins, suggesting that there is a high con-
sumption associated with input and output pads. Considering that
Tiwari’s method has the tendency of overestimation, we can expect
bigger errors when external data access (outside core) is involved.
Integrating the cache power analysis from tools such as CACTI
could reduce the deviation in those cases.

We also tested the acStone benchmark on the Altera platform.
Partial results are presented in Table 5 due to space limitations.
We can see an overall reduction in error. The error range here
was between 0.01% and 17.49%, with 96% of the total number of
analyzed cases showing error with less than or equal to 15%. The
multiplication and division issue was considerably reduced here.
We reckon that the Plasma layout for this Altera FPGA was synthe-
sized to clock at a lower frequency, 25 MHz, increasing memory ac-
cess slack time and, therefore, reducing stall occurrences.

4.2. Leon3 processor

Leon3 is a HDL implementation of the SPARCv8 architecture
developed by Gaisler Research [31]. The processor is distributed un-
der two different licenses, a LGPL license and a commercial one.
The LGPL license allows access to the source code and free use
for academic purposes. We chose Leon3 because it is compatible
with the SPARCv8 ArchC processor model and, since it is more
complex than Plasma, the evaluation of the acSynth workflow on
this platform reveals different aspects. In contrast with the
100 MHz FPGA of Plasma, Leon3 was characterized on a Xilinx
Spartan3 xc3s1000 FPGA clocked at 50 MHz.

The complexity of Leon3 affected the size of transition files due
to the larger number of signals and registers. As a result, there was
an increase in the time spent with characterization. Each instruction
spent 5-10 min to collect the transition activities and 10-15 min to
generate the XPower reports. We performed 97 tests, tallying up to
30 h of characterization. After the automatic characterization,
some instructions were filled manually using a counterpart
instruction: load, store and swap with register operands were
filled with energy consumption of the same instruction using
immediate values; the energy of the division instructions were
filled with the energy consumption of their equivalent multiplica-
tion instructions; the jump, jmpl_imm, and jmpl_reg were filled
with the energy consumption of the ba instruction. The power con-
sumption of the stal1l cycle was estimated to be 84 pJ. In Table 7
we present the final report.

It is noteworthy that the Leon3 energy consumption per
instruction uses a pico-Joule scale, presenting a lower consumption
than Plasma. We may credit this to the different chip characteristics

220 mips1 mibench consumer lame

230 | 1 .
220 | |
01

210 \ v

i I gl
190 I v
180 }
170

0 10 20 30 40 50 60 70 80 90

Fig. 5. Energy profile of the Mediabench and Mibench benchmarks using characterization data on Xilinx Platform. Power (mW) x Time (s).

M. Guedes et al./Journal of Systems Architecture 59 (2013) 603-614 611

of this FPGA. Using the ArchC SPARCVS ISS augmented with the per
instruction power information of Table 7, we measured the energy
consumption of Mibench and Mediabench benchmarks. Table 8
presents the results for the Mediabench benchmark.

We also carry out a comparative study between the RTL level
simulation and the ADL level simulation using the acStone bench-
mark, whose results are shown in Table 9. In comparison with Plas-
ma, note the difference in the number of executed instructions: the
program 146.array required 29,248 MIPS instructions on Plasma
while on Leon3 the same computation finishes after 21,288 SPARC
instruction are executed. This difference between architectures can
be especially important when energy consumption is a concern. If
the algorithm is taken into consideration in the consumption anal-
ysis, it can influence which processor a developer should choose.
The sole analysis of average power consumption can lead to mis-
takes if you do not consider the amount of instructions required
to execute a program over all candidates.

It is important to notice that we applied the macro expansion
approach in this simulation for softwares abusing mul and div.
As discussed in Section 4.1.1, mult and div may increase the error
due to stalls. For SPARC, we applied the same type of instruction
count adjustment as follows: multiplication instructions were ex-
panded to 5 (to simulate the 5 cycles of delay in a 16 x 16 pipe-
lined multiplier), and division instructions to 36. As expected, the
distortion decreased in those cases. These special cases are marked
with an asterisk in Table 9. The Leon3 processor is more complex
than the Plasma processor and this fact also has an impact on

Table 7
Dynamic energy of Leon3 instructions in a Spartan3 FPGA.

Instruction E (p]) Instruction E(p]) Instruction E (p])
add_imm 272.00 1ldsb_reg 11820 st_imm 189.40
add_reg 396.00 1dsh_imm 117.00 st_reg 189.40
addcc_imm 286.00 1dsh_reg 117.00 stb_imm 229.80
addcc_reg 396.80 1ldstub_imm 149.60 stb_reg 235.20
addx_imm 282.20 1ldstub_reg 149.60 std_imm 167.20
addx_reg 394.60 1ldub_imm 111.00 std_reg 167.20
addxcc_imm 282.80 1dub_reg 111.00 sth_imm 22040
addxcc_reg 39740 1duh_imm 11140 sth_reg 220.40
and_imm 188.20 1lduh_reg 11140 sub_imm 298.60
and_reg 17420 mulscc_imm 256.40 sub_reg 405.20
andcc_imm 191.00 mulscc_reg 278.80 subcc_imm 302.20
andcc_reg 175.00 nop 149.60 subcc_reg 407.80
andn_imm 205.60 or_imm 217.60 subx_imm 299.40
andn_reg 176.20 or_reg 182.60 subx_reg 405.20
andncce_imm 209.80 orcc_imm 217.00 subxcc_imm 300.00
andncc_reg 177.40 orcc_reg 183.00 subxcc_reg 407.40
ba 102.80 orn_imm 22220 swap_imm 137.60
bece 106.20 orn_reg 193.00 swap_reg 137.60
bes 151.60 orncc_imm 22460 trap_imm 0.00
be 10240 orncc_reg 19440 trap_reg 0.00
bg 151.80 ray 160.00 udiv_imm 133.20
bge 10640 restore_imm 170.00 wudiv_reg 115.00
bgu 151.80 restore_reg 169.60 udivcec_imm 144.40
bl 151.80 save_imm 171.00 udivcec_reg 113.60
ble 10240 save_reg 17140 umul_imm 133.20
bleu 102.20 sdiv_imm 171.00 umul_reg 115.00
bn 150.00 sdiv_reg 116.00 umulcc_imm 144.40
bne 150.40 sdivce_imm 144.40 umulcc_reg 113.60
bneg 151.60 sdivcc_reg 11520 unimplemented 0.00
bpos 106.60 sethi 24480 wry_imm 324.00
bve 106.40 s11_imm 195.20 wry_reg 218.80
bvs 151.80 sll_reg 18340 xnor_imm 345.40
call 103.80 smul_imm 171.00 xnor_reg 375.60
jmpl_imm 102.80 smul_reg 116.00 xnorcc_imm 347.20
jmpl_reg 102.80 smulcc_imm 167.60 xnorcc_reg 380.00
1d_imm 111.00 smulcc_reg 11520 xor_imm 257.00
1ld_reg 111.00 sra_imm 190.60 xor_reg 288.00
1dd_imm 126,40 sra_reg 176.20 xorcc_imm 265.40
ldd_reg 169.80 srl_imm 193.60 xorcc_reg 281.60
1dsb_imm 11820 srl_reg 175.80

Table 8

Mediabench benchmarks: estimation of energy consumption.
Program Instr Power Energy tsim =~ tsjm RTL

(M) (mW) (m]) (s) (day)

timing 868 12 208 27 739
rawcaudio 7 12 2 <1 6
rawdaudio 6 11 1 <1 5
toast 157 11 35 5 134
untoast 85 12 21 3 72
cjpeg 14 12 3 <1 12
djpeg 4 12 1 <1 4
mpeg2encode 10,834 11 2299 380 9227
mpeg2decode 3452 10 664 123 2940
pegwit gen 13 12 3 <1 11
pegwit enc 30 11 7 1 26
pegwit dec 17 11 4 1 14

the technique. The adjustment brought better results, but not as
good as in the Plasma processor case study. The reason is that
Leon3 has more complex scenarios and stall cycles appears in both
characterization and simulation steps. And as we discussed for
MIPS Plasma, a straightforward solution would be to enhance the
ArchC framework with cycle-accurate information.

For the SPARCvS8 architecture using Xilinx tools, the error ran-
ged between 0.14% and 40.66% with 95% of the total number of
cases presenting errors less than or equal to 20%. The greater error
was, like Plasma for Xilinx, in multiplication and division bench-
marks, although it was smaller than for Plasma. This suggests that
Leon3 has a more consistent mult/div unit co-processor and that
the lower frequency (50 MHz, compared to Plasma 100 MHz at Xi-
linx platform) can affect the error rate.

4.3. Energy profiling of multicore systems

As a beneficial side effect, acSynth can provide the energy pro-
file in real-time. Using the acStat class, it is possible to create dif-
ferent algorithms for power analysis. During the simulation,
acSynth saves the data in CSV format with instantaneous power
estimation. This feature allows us to plot graphs offering a different
perspective into power analysis with special focus on the relation-
ship between software and processor in the energy consumption.

Hitherto, we presented the energy profile for a single processor
core. The framework may be extended using PowerSC to generate
whole system reports encompassing several modules in different
abstraction levels. For instance, one could have a processor at the
architecture level, memory at system level, and accelerators at gate

Table 9
Simulation with acStone and effective error evaluation (Leon3 Xilinx).

Program Instr acSynth (mW) XPower (mW) erTerr (%)
011.const 31 9.13 8.72 4.67
021.cast 45 9.10 8.56 6.29
031.add 222 10.73 9.56 12.25
041.sub 222 10.78 9.48 13.73
051.mul* 381 7.28 8.80 16.76
052.mul* 282 7.80 9.15 14.36
061.div* 769 9.84 9.46 3.66
071.bool 238 10.09 9.12 10.60
081.shift 186 10.27 9.42 9.00
111.if 381 9.51 8.79 8.21
121.loop 703 9.57 8.51 12,51
125.loop 1489 8.57 8.56 0.14
131.call 94 8.52 8.50 0.28

146.array 21,288 9.06 10.04 9.80

612 M. Guedes et al./Journal of Systems Architecture 59 (2013) 603-614

240
225
210

MRS N

165

0 20 40 60 80 100 120 140
(a) Dual-MIPS running fft

11.5
11 f\.-www
—1
10.5 /
9.5
9

0 100 200 300 400 500 600
(c) Dual-SPARC running dijkstra

220
215

s10b A AN
205 /‘(\ / N\/\ > \
sl AP /

—

0 50 100 150 200
(b) Quad-MIPS running basicmath

12
11.5

11
10.5 /

g
i]
/
/
~/

[>>

9.5
9
8.5
8
7.5

0 50 100 150 200 250 300
(d) Dual-SPARC running fft

Fig. 6. Energy profile of SPARC and MIPS platforms [Power (mW) x Time (s)].

level. Furthermore, each module can have a specific analysis algo-
rithm, which is an appealing flexibility to the system designer.

We found that acSynth and its methodology are easily applied
to virtual multicore platforms. To demonstrate this, we use a scal-
able set of SystemC-based representation of MultiPlocessor SoCs
(MPSoCs), each one composed by 1, 2, 4, 8, 16, 32, or 64 cores, a
shared memory, a lock device and a router intercommunication de-
vice. These platforms use the ArchC MIPS-I and SPARCv8 processor
models, including the per instruction power information per core
provided by acSynth.

The acSynth reports show energy consumption details, which
can be used for power profiling as shown in Fig. 6. The elementary
difference between energy consumption of the two cores in
Fig. 6a-d is caused by the larger number of memory accesses to
allocate and initialize the input variables; this setup phase is exe-
cuted by one of the cores while the other is waiting in a barrier. In
this case, we can identify different phases performed by each core.
A further observation is that the energy consumption of the cores
in Fig. 6b reflects a large number of mathematical operations car-
ried out over a small statically allocated amount of data.

5. Conclusion

This paper presented acSynth, an ArchC framework for power
characterization and simulation. This tool brings a whole new con-
sumption analysis aspect into ArchC allowing power reports and
energy consumption to be generated in a very short time frame.
As main contributions, we can assign:

e we introduced full and expansible characterization methodol-
ogy, independent of synthesis tools and target architecture;

e we illustrated how to generate the characterization programs
using ADL information, and we detailed the integration of Pow-
erSC, acPower and acSim tools elaborating a unified system
bringing power consumption analysis into the ArchC ADL;

e we presented the acSynth tools, applying our methodology over
two processors, Plasma and Leon3, with distinguished architec-
tures, MIPS-I and SPARCVS, developed over two independent
workflow platforms, Altera and Xilinx;

e we showed a systematic method to expand acSim in order to
bring new high level analysis into the ArchC simulator, as power
consumption reports, and also integrate this method to extract
power information from multicore simulations using ArchC
processors.

Our experiments with the framework demonstrate that the
power characterization of Plasma, a MIPS-I processor, could be per-
formed in roughly 2 h with very small accuracy diversion. The
same characterization would take years on standard RTL method-
ologies. The short time provided by the framework is possible
due to the fast simulation speeds (35 millions instructions per sec-
ond), achieved on a regular quad-core desktop computer. The acS-
ynth brings a powerful architecture design level power analyzer
applicable to any architecture supported by ArchC system and
community.

The analysis with MIPS-I and Xilinx tool set presented error be-
tween 0.02% and 61.05%, with 91% of the total number of analyzed
cases presenting errors with less than or equal to 30%. Adopting Al-
tera tool set, the error was between 0.01% and 17.49% with 96% of
the total number of analyzed cases showing error with less than or
equal to 15%. For SPARCv8 architecture, using Xilinx tool set, the
error ranged between 0.14% and 40.66% with 95% of the total num-
ber of analyzed cases presenting errors with less than or equal to
20%. The methodology was also successfully applied in a multicore
simulation system, providing power profiles and comparative sim-
ulations at the architecture level.

Acknowledgments

This work was partially funded by FAPESP grants 2010/02230-5,
2011/09630-1, 2011/00901-2, CAPES and CNPq.

References

[1] The ArchC Architecture Description Language. Available at:
www.archc.org/>.

[2] S. Rigo, G. Araujo, M. Bartholomeu, R. Azevedo, Archc: a systemC-based
architecture description language, in: 16th Symposium on Computer

Architecture and High Performance Computing, 2004 - SBAC-PAD 2004,

<http://

http://www.archc.org/
http://www.archc.org/

M. Guedes et al./Journal of Systems Architecture 59 (2013) 603-614 613

2004, pp. 66-73 (Best Paper Award). http://dx.doi.org/10.1109/SBAC-
PAD.2004.8.

[3] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo, C. Araujo, E. Barros, The ArchC
architecture description language and tools, International Journal of Parallel
Programming 33 (2005) 453-484, http://dx.doi.org/10.1007/s10766-005-
7301-0.

[4] S. Rigo, R. Azevedo, L. Santos, Electronic System Level Design: An Open-Source
Approach, Springer, 2011.

[5] T. Gupta, C. Bertolini, O. Heron, N. Ventroux, T. Zimmer, F. Marc, High level
power and energy exploration using ArchC, in: 22nd International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD),
2010, 2010, pp. 25-32. http://dx.doi.org/10.1109/SBAC-PAD.2010.13.

[6] J. Ma, R. Azevedo, Estimativa de consumo de energia em nivel de instrucao para
processadores modelados em ArchC, in: Workshop de Sistemas
Computacionais - WSCAD-SSC, SBC, 2009, pp. 119-126 (in Portuguese).

[7] M. Guedes, R. Auler, E. Borin, R. Azevedo, An ArchC approach for automatic
energy consumption characterization of processors, in: Proceedings of the
23rd IEEE International Symposium on Rapid System Prototyping, RSP 2012,
2012.

[8] J. Coburn, S. Ravi, A. Raghunathan, Power emulation: a new paradigm for

power estimation, in: Proceedings of the 42nd Annual Design Automation

Conference, DAC ’05, ACM, New York, NY, USA, 2005, pp. 700-705. http://

dx.doi.org/10.1145/1065579.1065764. Available at: <http://doi.acm.org/

10.1145/1065579.1065764>.

T.H. Krodel, Powerplay-fast dynamic power estimation based on logic

simulation, in: Proceedings of the 1991 IEEE International Conference on

Computer Design on VLSI in Computer & Processors, ICCD '91, IEEE Computer

Society, Washington, DC, USA, 1991, pp. 96-100. Available at: <http://

dl.acm.org/citation.cfm?id=645460.654390>.

[10] W. Ye, N. Vijaykrishnan, M. Kandemir, M. Irwin, The design and use of
simplepower: a cycle-accurate energy estimation tool, in: Proceedings of the
37th Annual Design Automation Conference, DAC '00, ACM, New York, NY,
USA, 2000, pp. 340-345. http://dx.doi.org/10.1145/337292.337436. Available
at: <http://doi.acm.org/10.1145/337292.337436>.

[11] E. Senn, J. Laurent, N. Julien, E. Martin, Softexplorer: estimating and optimizing
the power and energy consumption of a C program for DSP applications,
EURASIP Journal on Applied Signal Processing 2005 (2005) 2641-2654, http://
dx.doi.org/10.1155/ASP.2005.2641. Available at: <http://dx.doi.org/10.1155/
ASP.2005.2641>..

[12] A. Stammermann, L. Kruse, W. Nebel, A. Pratsch, E. Schmidt, M. Schulte, A.
Schulz, System level optimization and design space exploration for low power,
in: Proceedings of the 14th International Symposium on Systems Synthesis,
ISSS 01, ACM, New York, NY, USA, 2001, pp. 142-146. Available at: <http://
dx.doi.org/10.1145/500001.500034>.

[13] O. Schliebusch, A. Chattopadhyay, R. Leupers, G. Ascheid, H. Meyr, M. Steinert,
G. Braun, A. Nohl, Rtl processor synthesis for architecture exploration and
implementation, in: Proceedings of the Conference on Design, Automation and
Test in Europe - Volume 3, DATE '04, IEEE Computer Society, Washington, DC,
USA, 2004, p. 30156.

[14] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, M. Olivieri, Mparm:
Exploring the multi-processor SoC design space with systemC, The Journal of
VLSI Signal Processing 41 (2005) 169-182, http://dx.doi.org/10.1007/s11265-
005-6648-1.

[15] L. Piga, R. Bergamaschi, F. Klein, R. Azevedo, S. Rigo, Empirical web server
power modeling and characterization, IEEE International Symposium on
Workload Characterization (IISWC) 2011 (2011) 75, http://dx.doi.org/
10.1109/1ISWC.2011.6114200.

[16] V. Tiwari, S. Malik, A. Wolfe, M.T. chien Lee, Instruction level power analysis
and optimization of software, Journal of VLSI Signal Processing 13 (1996) 1-
18.

[17] V. Degalahal, T. Tuan, Methodology for high level estimation of FPGA power
consumption, in: Design Automation Conference, 2005. Proceedings of the
ASP-DAC 2005. Asia and South Pacific, vol. 1, 2005, pp. 657-660. http://
dx.doi.org/10.1109/ASPDAC.2005.1466245.

[18] M. Guedes, R. Auler, E. Borin, R. Azevedo, An ArchC approach for automatic
energy consumption characterization of processors, in: Rapid System
Prototyping (RSP), 2012, 2012.

[19] F.Klein, G. Araujo, R. Azevedo, R. Leao, dos Luiz Santos, An efficient framework
for high-level power exploration, in: MWSCAS 2007: Proceedings of the 50th
Midwest Symposium on Circuits and Systems, 2007, pp. 1046-1049. http://
dx.doi.org/10.1109/MWSCAS.2007.4488741.

[20] Synopsys Tools. Available at: <http://www.synopsys.com/Tools/>.

[21] Xilinx Design Tools. Available at: <http://www.xilinx.com/products/design-
tools/>.

[22] Altera Design Software. Available at: <http://www.altera.com/products/
software/>.

[23] Modelsim - Advanced Simulation and Debugging. Available at: <http://
model.com/>.

[9

[24] V. Tiwari, S. Malik, A. Wolfe, Power analysis of embedded software: a first step
towards software power minimization, IEEE Transactions on VLSI Systems 2
(1994) 437-445.

[25] R. Auler, P. Centoducatte, E. Borin, ACCGen: an automatic ArchC compiler
generator, in: Proceedings of the IEEE 24th International Symposium on
Computer Architecture and High Performance Computing, SBAC-PAD 12, IEEE
Computer Society, Washington, DC, USA, 2012, pp. 278-285. http://dx.doi.org/
10.1109/SBAC-PAD.2012.33.

[26] S. Rhoads, Plasma-most MIPS I (TM) Opcodes: Overview. Available at: <http://
opencores.org/project> (02.05.12).

[27] P. Shivakumar, N.P. Jouppi, Cacti 3.0: An Integrated Cache Timing, Power, and
Area Model, 2001/2.

[28] M.R. Guthaus,]J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown,
Mibench: a free, commercially representative embedded benchmark suite, in:
Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop, WWC '01, IEEE Computer Society, Washington, DC,
USA, 2001, pp. 3-14. http://dx.doi.org/10.1109/WWC.2001.15.

[29] C. Lee, M. Potkonjak, W.H. Mangione-Smith, MediaBench: a tool for evaluating
and synthesizing multimedia and communications systems, in: Proceedings of
the 30th Annual ACM/IEEE international Symposium on Microarchitecture,
MICRO 30, Washington, DC, USA, 1997, pp. 330-335.

[30] S.M.Z. Igbal, Y. Liang, H. Grahn, ParMiBench: an open-source benchmark of
embedded multiprocessor systems, IEEE Computer Architecture Letters 9 (2)
(2010) 45-48.

[31] A. Jiri Gaisler, Aeroflex Gaisler. Available at: <http://www.gaisler.com/> (Oct
2012).

Marcelo Guedes received his Master degree in com-
puter science from University of Campinas (UNICAMP),
Sao Paulo, Brazil, in 2012. He currently works as a cir-
cuit designer in Idea-IP.

Rafael Auler received his Master degree in computer
science from University of Campinas (UNICAMP), Sao
Paulo, Brazil, in 2011. He currently is enrolled in his
Ph.D. at the same university.

Liana Duenha received her Master degree in computer
science from Federal University of Mato Grosso do Sul
(UFMS), Mato Grosso do Sul, Brazil, in 2002. She cur-
rently is enrolled in her Ph.D. at University of Campinas
- UNICAMP.

http://dx.doi.org/10.1109/SBAC-PAD.2004.8
http://dx.doi.org/10.1109/SBAC-PAD.2004.8
http://dx.doi.org/10.1007/s10766-005-7301-0
http://dx.doi.org/10.1007/s10766-005-7301-0
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0010
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0010
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0010
http://dx.doi.org/10.1109/SBAC-PAD.2010.13
http://dx.doi.org/10.1145/1065579.1065764
http://dx.doi.org/10.1145/1065579.1065764
http://doi.acm.org/10.1145/1065579.1065764
http://doi.acm.org/10.1145/1065579.1065764
http://dl.acm.org/citation.cfm?id=645460.654390
http://dl.acm.org/citation.cfm?id=645460.654390
http://dx.doi.org/10.1145/337292.337436
http://doi.acm.org/10.1145/337292.337436
http://dx.doi.org/10.1155/ASP.2005.2641
http://dx.doi.org/10.1155/ASP.2005.2641
http://dx.doi.org/10.1155/ASP.2005.2641
http://dx.doi.org/10.1155/ASP.2005.2641
http://dx.doi.org/10.1145/500001.500034
http://dx.doi.org/10.1145/500001.500034
http://dx.doi.org/10.1007/s11265-005-6648-1
http://dx.doi.org/10.1007/s11265-005-6648-1
http://dx.doi.org/10.1109/IISWC.2011.6114200
http://dx.doi.org/10.1109/IISWC.2011.6114200
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0030
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0030
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0030
http://dx.doi.org/10.1109/ASPDAC.2005.1466245
http://dx.doi.org/10.1109/ASPDAC.2005.1466245
http://dx.doi.org/10.1109/MWSCAS.2007.4488741
http://dx.doi.org/10.1109/MWSCAS.2007.4488741
http://www.synopsys.com/Tools/
http://www.xilinx.com/products/design-tools/
http://www.xilinx.com/products/design-tools/
http://www.altera.com/products/software/
http://www.altera.com/products/software/
http://model.com/
http://model.com/
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0035
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0035
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0035
http://dx.doi.org/10.1109/SBAC-PAD.2012.33
http://dx.doi.org/10.1109/SBAC-PAD.2012.33
http://opencores.org/project
http://opencores.org/project
http://dx.doi.org/10.1109/WWC.2001.15
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0040
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0040
http://refhub.elsevier.com/S1383-7621(13)00106-9/h0040
http://www.gaisler.com/

614

M. Guedes et al./Journal of Systems Architecture 59 (2013) 603-614

Edson Borin received his Ph.D. degree in computer
science from University of Campinas (UNICAMP), Sao
Paulo, Brazil, in 2007. He currently works as a Professor
with the Institute of Computing at UNICAMP. Prior he
worked at Intel Labs, California, where he published 7
patents and got 4 internal prizes.

Rodolfo Azevedo received the Ph.D. degree in computer
science from University of Campinas (UNICAMP), Sao
Paulo, Brazil, in 2002. He currently works as a Professor
with the Institute of Computing at UNICAMP. His main
research interests include computer architecture, low
power, memory technologies, ADLs, and system-level
design, mainly using SystemC. Dr. Azevedo was a core-
cipient of Best Paper Awards at SBAC-PAD'04 for his
work on the ArchC ADL and SBAC-PAD’08.

	An automatic energy consumption characterization of processors using ArchC
	1 Introduction
	2 Related work
	3 The acSynth framework
	3.1 Overview
	3.2 Processor synthesis and power characterization
	3.3 Test code generation
	3.4 Feedback
	3.5 Power model

	4 Experimental results
	4.1 Plasma processor
	4.1.1 Xilinx platform
	4.1.2 Altera platform

	4.2 Leon3 processor
	4.3 Energy profiling of multicore systems

	5 Conclusion
	Acknowledgments
	References

