A Software Transactional Memory System for an Asymmetric Processor
Architecture

Felipe Goldstein, Alexandro Baldassin, Paulo Centoducatte, Rodolfo Azevedo
Institute of Computing
University of Campinas — UNICAMP
felipe.goldstein @students.ic.unicamp.br, {baldas,ducatte,rodolfo} @ic.unicamp.br

Leonardo A. G. Garcia
Linux Technology Center
IBM
lagarcia@br.ibm.com

Abstract

Due to the advent of multi-core processors and the con-
sequent need for better concurrent programming abstrac-
tions, new synchronization paradigms have emerged. A
promising one, known as software transactional memory
(STM), aims to use transactions as the key synchroniza-
tion mechanism to ease program development as well as in-
crease its performance. Many (if not all) of the current STM
implementations target homogeneous architectures. In this
paper we describe an implementation of an STM system for
an asymmetric architecture, the Cell BE. We evaluated our
Transactional Software Cache (TSC) mechanism using a
well-known micro-benchmark (IntSet) and the Genome ap-
plication from STAMP. The results show that an STM imple-
mentation for the Cell architecture is feasible if the shared-
memory programming model is adopted. When compared
to a conventional lock-based implementation, the STM ver-
sion of Genome obtained a performance gain of 84% and
24% with large and small input sets, respectively.

1 Introduction

For many years the increase in clock frequency has made
it possible for each new generation of microprocessors to
become faster. Unfortunately, this trend has come to an end
since increasing the clock speed causes a tremendous power
dissipation which cannot be remedied by current cooling
technology. In order to make use of the ever-increasing
number of transistors the semiconductor industry has cho-
sen to integrate multiple cores of execution into a single
chip, given rise to the multi-core era. Although most of

these multi-core processors have homogeneous architec-
ture, there are some work towards asymmetric models, like
the Cell Broadband Engine (Cell BE) [9].

The shift towards parallel computing has an enormous
impact on software development. The general consensus
on shared memory architectures is that writing efficient and
scalable code using traditional lock-based approaches are
very difficult due to their low abstraction level and lack
of composability [14]. A promising alternative is known
as Transactional Memory (TM) [10], wherein transactions
are specified by programmers and the system is responsi-
ble to execute them atomically and in isolation. Proposals
for TM implementation have emerged in three fronts: Hard-
ware (HTM), Software (STM), and Hybrid (HyTM).

In this paper we describe an implementation of an STM
system for an asymmetric architecture, the Cell BE. To the
best of our knowledge this is the first implementation of an
STM in a heterogeneous multicore processor. Although we
are targeting one specific architecture, we believe that the
techniques employed here would be useful for similar ma-
chines. One of the main differences between a Cell BE pro-
cessor and other general purpose processors is that the pro-
grammer has deep access to the processor internals. There-
fore, it is a programmer responsibility not only the control
of all the communication mechanisms provided by the hard-
ware (i.e. DMA, mailboxes, and signals) but also the man-
agement of the non-cached local store memory available in
each of its synergistic cores (SPE).

We evaluated our Transactional Software Cache ap-
proach, called TSC, through the IntSet [8] micro-
benchmark using two different data structures (linked-list
and hashtable) and the Genome application from STAMP
[3], allowing us to assess our implementation with a robust

application. We compared the results against a global lock-
ing scheme and concluded that our approach is more ef-
fective. The Genome application using our TSC approach
obtained a performance gain of 84% with a large input set
and a gain of 24% with a small input set when compared
to the lock-based version, also achieving a better scalabil-
ity. The main contributions of this paper are: (1) The first
implementation of an STM system on top of an asymmetric
processor architecture. (2) A software cache with consis-
tency for the Cell BE expanding the one provided with the
current IBM SDK for Multicore Acceleration 3.0 [1].

This paper is organized as follows: Section 2 presents a
brief overview of the Cell BE processor. Section 3 describes
our software transactional memory infrastructure and how
it deals with the Cell BE asymmetry. Section 4 shows our
experiments and presents our preliminary results. Finally
Section 5 describes related work and we conclude in Section
6.

2 The Cell BE Processor

The Cell Broadband Engine Architecture introduced a
new organizational approach to processor design when it
was first released in 2006. The processor is composed by a
Power Processing Element (PPE) and eight Synergistic Pro-
cessing elements (SPE). Each SPE has its own local store
(256K) which is separated from system memory. While the
PPE can access system memory via load and store instruc-
tions, the SPE cores access it through a globally-coherent
DMA engine. Furthermore, the instruction set of the PPE is
different from that of the SPE. This new organization made
it possible to have supercomputer processing power in just
one chip.

Although the initial purpose of the Cell BE processor,
the first real incarnation of the Cell BE Architecture, was
to have outstanding computing performance, specially on
game and multimedia applications, and real-time respon-
siveness to the user and the network [9], the Cell BE devel-
opment community was rapidly enlarged by people seek-
ing new opportunities for the huge computation power and
unique design provided by the new architecture.

One important difference between conventional proces-
sors and the Cell BE is the fact that only a single program
context is supported at any time on an SPE core. Although
this can sound a bit strange at first as this kind of limita-
tion is not seen in conventional processor for a long time,
this unique design decision simplified lots of aspects related
to the SPE programmability, making the SPE the perfect
choice for computational demanding tasks that should not
be interrupted or for other types of tasks that need some
level of isolation from the outside world.

Programming the Cell BE is complicated by several fac-
tors. On the one hand, programmers must deal with the

communication aspects among the cores and system mem-
ory (such as issuing DMA commands). On the other hand,
they also need to manage the different ISAs and distribute
the work so as to make the most out of the architecture.
With time, all the low level details are expected to be added
on a compiler or a specific library that deals with the ins
and outs of a specific problem scenario, making the devel-
opment task easier. However, the current stage is quite far
from that reality in a number of research fields.

3 Transactional Memory and CellBE

The transaction concept is the key abstraction element in
STM systems and the one programmers reason about. In its
simplest form, a transaction is just a block of instructions
guaranteed to execute atomically and in isolation from the
rest of the system. Transactions aim to provide synchroniza-
tion abstractions as easy to program as with coarse-grained
locks and, at the same time, perform as well as fine-grained
lock-based synchronization.

Transactional memory systems transfer the burden of
concurrency control from the programmer to the underlying
system implementation. As multiple transactions are spec-
ulatively executed, the system keeps track of every memory
location accessed by each transaction. Both old and new
data are implicitly managed (data versioning) and conflicts
among transactions can be safely detected. In case a conflict
arises it is possible, for instance, to roll back a transaction
(using the old data) without any intervention from the pro-
grammer side.

Our STM model is based on the TL2 [4] algorithm
adapted to suit the Cell BE architecture needs as will be
explained shortly. The idea behind the TL2 algorithm can
be briefly described as follows: A global version-clock is
maintained in the system for consistency. Each memory
location is augmented with a lock and a version number
(called henceforth the versioning directory). When a trans-
action starts executing, it reads and saves a local copy of the
version-clock. Every memory location read by a transaction
must be first validated against the transaction version-clock
by using the corresponding version number. The set of all
values read is called the transaction read-set. Similarly, the
write-set is comprised of all memory locations written and
buffered internally by a transaction. When a transaction is
about to commit it must acquire locks for each location in its
write-set, increment the global version-clock in main mem-
ory, validate the entire read-set, write back the write-set to
main memory with appropriate version numbers, and finally
release the write-set locks. For further details please refer
to the original TL2 algorithm in [4].

When adapting the TL2 algorithm to the Cell processor
we focused on the simplicity and flexibility of the model to
take advantage of the architecture particularities in a way

to facilitate its implementation. This preliminary version
is a proof of concept of how the software cache model
and software transactional memory together can solve many
problems faced by programmers when developing a shared-
memory multithreading application for the Cell BE proces-
sor. In the rest of this section we show how these two con-
cepts can work together to make programmers life easier.

3.1 Conventional Software Cache

Our STM architecture leverages the conventional soft-
ware cache implementation that comes with the IBM SDK.
This software cache is implemented as an array of cache
lines and a directory array. Both structures are stored in the
SPE’s local store. Each cache line contains a Tag, a Valid
and Modified bits, and 128 bytes of data. In our experi-
ments we use a 4-way associative cache configuration. The
implemented replacement policy is Round-Robin.

The software cache API is exposed to the user via a
set of macros. These macros take care of eventual DMA
transfers when system memory is referenced, thereby hid-
ing the communication complexity from programmers. The
macros are of the form:

® LOAD (effective_address): returns the word in
main memory pointed by effective_address;

® STORE (effective_address, word_value):
stores word.value in the main memory position
pointed by effective_address.

The problem with this software cache model is that it
does not guarantee cache coherency. Modifications in an
SPE cache are not reflected to others SPEs. In this scenario,
any arbitrary combination of reads and writes may lead to
data inconsistencies. The same inconvenience happens if
there are different variables residing in the same cache line
due to false sharing.

Now consider the case in which a programmer must ac-
cess data shared among the SPE threads. The usual method
to avoid data race conditions by using mutex locks will
also fail since this software cache model does not guaran-
tee data consistency. Therefore, even serializing the access
to shared data by using mutexes will not prevent race con-
ditions. In this scenario the only alternative is to explicitly
issue a DMA command when accessing shared data inside
a critical area, making the source code difficult to read and
maintain. The implementation of an STM system on top of
the software cache described in the next section solves these
drawbacks.

3.2 Transactional Software Cache

We introduce here the TSC model by merging the TL2
transactional memory model with the traditional software

cache. Not only this guarantees that each set of memory
operations running on an SPE thread are consistent and co-
herent with other SPE threads, but it also elegantly allows
programmers to access shared data without the need of ex-
plicit lock operations.

The TSC model does not add more programming com-
plexity than the traditional software cache model does. As
explained before, the software cache model does require ev-
ery data located in main memory to be accessed through the
provided macros. However, since DMA operations are hid-
den from programmers the use of caching is still advanta-
geous. Traditional software transactional memory systems
implemented as a library for unmanaged languages also
have a very similar characteristic: they require program-
mers to insert read and write barriers manually.

When we merge both models, we see that both require-
ments are the same and the only thing that changes is the
way the read and write barriers are implemented. From a
programmer’s point of view, there is no change from the
traditional software cache programmability to the TSC pro-
grammability.

To illustrate this, we present a practical example of how
the source code of an ordered linked-list can be converted
into a software cache version and also how this version can
be converted to a TSC one.

Figure 1a shows the source code of the remove routine
of an ordered linked-list and its use in a code block. We
want to convert this routine into a software cache version
that makes use of the LOAD and STORE macros to read and
write variables from/to main memory. At this time we as-
sume that we will run only one SPE thread accessing the
linked-list stored in main memory.

All the bold-face code in Figure 1a are accesses to mem-
ory locations that will be in main memory and, therefore,
we need to change each read access to use the LOAD macro
and each write access to the STORE macro. For example, the
first bold-face code line in figure 1a is an assignment from
the variable prevPtr->nextPtr. This variable is located
in main memory at the address & (prevPtr—>nextPtr).
Thus we need to change it and add the LOAD macro as shown
in the first bold-face line of Figure 1b. Figure 1b shows how
the list remove routine will look-like after converting it to a
software cache model. All the modifications, in bold-face,
follow the same style mentioned above.

Now, let us say we want to add more SPE threads exe-
cuting the same source code in parallel. In this scenario we
need to use the TSC model to ensure data coherency. To
do so, we must look carefully the source code in the Figure
la to find out the piece of code that should run atomically.
This is our critical section and we should take care of it
when converting our source code. A dashed box is around
the three lines found as critical section. All we need to do
is to add the macros TM_BEGIN and TM_END guarding this

bool t list remove (list_t* listPtr, void* dataPtr) {
list node t* prevPtr = list findPrevious(listPtr, dataPtr);
list_node_t* nodePtr = prevPtr->nextPtr;
if ((nodePtr != NULL) &&
(compare(nodePtr->dataPtr, dataPtr) == 0)) {
prevPtr->nextPtr = nodePtr->nextPtr;
nodePtr->nextPtr = NULL;
freeNode (nodePtr);
listPtr->size—-;
return TRUE;
}
return FALSE;

int main() {

: ist_insert(listPtr, value X);

i list_find(listPtr, value X);
| list remove(listPtr, value X);

i
// Must Always Find X |
i

(a) Original code

bool t list remove (list t* listPtr, void* dataPtr) {
list_node_t* prevPtr = findPrevious(listPtr, dataPtr);
list_node_t* nodePtr LOAD(&(prevPtr->nextPtr));
void* node_dataPtr;
if (nodePtr != NULL) {
node dataPtr = LOAD(&(nodePtr->dataPtr));

}

if ((nodePtr != NULL) &&
(compare(node_dataPtr, dataPtr) == 0)) {
STORE(&(prevPtr—>nextPtr), LOAD(&(nodePtr->nextPtr)));
STORE(&(nodePtr->nextPtr), NULL);
freeNode(nodePtr);
long size = LOAD(&(listPtr->size));
size——;
STORE(&(listPtr->size), size);
return TRUE;

}

return FALSE;

(b) Software Cache code

int main() {

TM_BEGIN() ;
list_insert(listPtr, value_X);
list find(listPtr, value X);
list_remove(listPtr, value X);
TM_END() ;

// Must Always Find X

(c) TSC code

Figure 1: Conversion of a linked-list code to TSC

piece of code and we transform the critical area into a trans-
action as shown in lc. This is necessary to guarantee that
the three list operations guarded by the TM macros are ex-
ecuted atomically. Notice that this is the only modification
we need to do, the rest of the code remains the same as the
software cache model.

Therefore we can see that the difficulty to transform a
conventional source code into a software cache code is the
same of transforming the source code into a TSC code.

External RAM PPU

Regular TM Version
addressable memory Directory

N

PPE TM Infrastructure
Thread

COMMIT

[Cache Lin;: (128b)y] [Version|

1 FETCH FROM RAM
\DMA TRANSFER)
= ap==

COMMIT
(DMA TRANSFER)

SPU - ——————
+ 1 \
SPE Thread Software Cache 1| Read Set
- 1 : 1 .
I - v I H
Tag | CacheLine (128 b \‘ ™ = = - Tag LJ
4 1
READ MISS " :
| ’
| S| Write Set
] WRITEBACK (7 J
: ~>Tag | Cache Line (128 b)
SPE | SPE Local Storage :
o] g :)%/

Figure 2: TM Infrastructure on the CellBE

Since this is a mechanical transformation process, it could
be made by compilers without programmer intervention.

3.3 Infrastructure of TM on CellBE

Our transactional memory model acts as a layer between
the software cache in the SPE local store and the accesses
to main memory. We leveraged the conventional software
cache by adding two new operations: a transactional fetch
and a transactional write-back. When a fetch is executed
inside a transaction, the transactional version is executed
instead of the regular one. The same happens to the write-
back routine.

An overview of the infrastructure is depicted in Figure 2.
Its main components are comprised of:

e SPU unit: contains the read-set, write-set and the soft-
ware cache structure in SPE local store. There is only
one thread running in each SPE processor;

e PPU unit: contains the PPE thread responsible to per-
form the commit procedure;

e Main memory: contains the regular addressable mem-
ory and the transactional memory directory that keeps
track of versioning.

The transaction descriptor, read-set and write-set for
each transaction are stored in the SPE local store. Notice
that both the read and write sets could also be stored in
main memory if a larger set size is required, but we leave
this for future work. The transaction descriptor also con-
tains the current transaction version-clock used to validate

the reads. The versioning directory is maintained in main
memory along with the global version-clock.

When a transaction is initiated it first fetches the cur-
rent global version-clock from main memory and stores it
locally in its transaction descriptor. A transactional fetch
inserts the new cache line address into the read-set (if it is
not already present). It then verifies whether the write-set
contains the fetched address (i.e., the address had been pre-
viously modified). In the affirmative case, the address is
stored in the cache line array and its current value returned.
Otherwise, it is necessary to fetch the current version for
the cache line from the TM versioning directory so that val-
idation can take place. If the validation process fails, the
transaction is aborted and restarted. Otherwise a new cache
line must be fetched from main memory and stored in the
cache line array.

A transactional write-back, differently from the conven-
tional write-back, does not transfer the modified cache line
to the final address in main memory. Instead, it adds the
cache line in its write-set (this is known as lazy versioning).
The dashed-line arrows in Figure 2 illustrates the transac-
tional fetch and write-back operations.

Notice that all the aforementioned actions are executed
entirely by only one SPE. In order to take advantage of
the Cell BE heterogeneous architecture our infrastructure
assign some tasks to the PPE processor. When the SPE
thread needs help from the PPE to execute an specific task it
makes a call to the PPE in a Remote Procedure Call (RPC)
fashion. Our RPC-like system was implemented in a simi-
lar way as the spe_callback.-handler_register mech-
anism, available in the IBM SDK. The RPC message itself
is passed as mailboxes. Its arguments may be either passed
through mailboxes or DMA depending on their size.

The most important task that the PPE is responsible for is
the transaction’s commit procedure. When the SPE is ready
to commit, it transfers its read and write sets to a predefined
temporary main memory location and makes an RPC call to
the PPE to request a commit operation. The SPE also sends
the current transaction version-clock so as to allow the PPE
to validate the transaction. As can be seen, the commit oper-
ations is realized by the PPE. The steps involved are similar
to the TL2 algorithm: (1) lock the write-set; (2) increment
the global version-clock; (3) validate the read-set; (4) make
the actual commit, and (5) release the locks.

In the meantime the SPE is waiting for an answer from
the PPE to check if the transaction has succeeded or failed.
If the commit phase fails, the PPE replies to the SPE with a
negative answer and the SPE executes an abort operation re-
starting the current transaction. If the commit has been suc-
ceeded the PPE replies with a positive answer and the SPE
continue its normal execution. The PPE also executes other
tasks, such as allocate and free memory when requested by
one of the SPE cores.

4 Experiments

Our case studies have been tested on a PlayStation 3!
machine. The PlayStation 3 is provided with a Cell BE pro-
cessor running at 3.2 GHz with one Power Processor Unit
(PPU) and six Synergistic Processor Unit (SPU)?.

Our evaluation methodology consisted of running each
application instance 10 times and taking the average. We
divided the measured number of successfully completed
transactions by the total execution time to obtain the number
of transactions per second and use this number as a metric
of comparison.

We ported the Linked-List and the HashTable implemen-
tation from the STAMP [3] benchmark to our TSC system
on the Cell BE. Using these two data structures, we imple-
mented two micro-benchmarks similar to the IntSet micro-
benchmark used in [8]. Additionally, we also ported the
Genome application from STAMP [3], as it is a real and big
application and can give a more realistic result in the evalu-
ation of our transactional memory system.

All the experiments evaluated were compared against the
same application implemented using a global mutex-lock
that is acquired when accessing a shared memory region
and using the traditional software cache library provided by
the IBM SDK.

4.1 IntSet Linked-List

We evaluated the IntSet Linked-List micro-benchmark
using two different average set sizes, a small one with 100
nodes and big one with 1000 nodes. We also vary the fre-
quency of updates from 20% to 50% for each set size (half
of updates are insert operations and half are remove opera-
tions).

Figure 3 shows the number of transactions per second as
a function of the number of running SPEs, comparing the
mutex-lock implementation with the TSC. Figure 3a shows
the IntSet Linked-List using the small set and 20% of up-
dates, Figure 3b uses the big set and 20% of updates, Figure
3c uses the small set and 50% of updates, Figure 3d uses
the big set and 50% of updates. These charts show that the
performance of the mutex-lock degrades while the TSC in-
crease as the number of SPEs increase.

It is important to note the scalability problem in the
liked-list. Figures 3b and 3d show that it is more efficient to
use only one SPE with mutex-lock than any other scheme
when handling a linked list of big size. One can see that, as
the number of concurrent SPEs increases, there is a sharp
decrease of performance in the lock version. It is even more

!PlayStation is a registered trademark of Sony Computer Entertainment
Inc.

2From the total of the eight SPUs, one is locked-out on the factory to
improve manufacturing yields and another one is reserved for the OS

Transactional —@— 1 Transactional —@—
9 Mutex Lock & 9 S5k ¢ Mutex Lock -
g 24k g
51 S
3 23
7] 7]
g 20k / g
@ @ 4
S 16k J'/' s ¢ D*A‘M'/‘
g 5 3k =
Bk f et g .
2%k e S
ek
8k
1 2 3 4 5 6 1 2 3 4 5 6
Number of SPEs Number of SPEs

(a) 20% of updates, small set size (b) 20% of updates, big set size

28k " 3k
Transactional —@—
Mutex Lock -~

24k
20k // il

Transactional —@—
. Mutex Lock -

2k

Transactions per Second
Transactions per Second

1 2 3 4 5 6 1 2 3 4 5 6
Number of SPEs Number of SPEs

(c) 50% of updates, small set size (d) 50% of updates, big set size

Figure 3: IntSet Linked-List

critical as the number of nodes in the linked list increases,
achieving a slow down of up to 3x compared with 1 SPE.

Additionally, the transactional version has a small im-
provement of 7% in performance as the number of SPEs
increases, but this improvement is not worth compared to
the mutex-lock version with one SPE. In the ordered linked-
list, as its size grows up, the probability that one transaction
will abort increases proportionally because any list opera-
tion will traverse most part of its nodes to reach the desired
searched node. Due to the increased number of aborts, the
transactional version does not scale better in a big-sized or-
dered linked-list.

4.2 IntSet HashTable

We evaluated the IntSet HashTable micro-benchmark
also using two different average set sizes, a small one with
100 nodes and big one with 10000 nodes. The frequency of
updates are the same as of the Linked-List as cited before.
The charts of transactions per second as a function of the
number of running SPEs are plotted in Figure 4.

Figure 4 shows that the mutex lock version is faster when
using the IntSet HashTable benchmark, but this can be ex-
plained. This micro-benchmark does one hashtable opera-
tion per transaction inside a for loop and there is no other
useful work besides this. The hashtable operation is almost
always small and fast, thus, when running the transactional
version, the total time of the benchmark is dominated by
the overhead of the transaction. Additionally, we can note
that the mutex-lock version degrades the performance as the
number of SPEs running increase in contrast to the transac-

130k

Mutex Lock & : Mutex Lock ——a—
= 115k Transactional —@— = Transactional —@—
g A 2 130k A,
@ 3 & 110k &
5 =
g s 2 g0k
g 70k £
e £ 70k
s 55k F]
g £ 50k .
e o ‘ = , o —0—9
25k ¢ —— 30k o ;
1 2 3 4 5 6 1 2 3 4 5 6

Number of SPEs

(b) 20% of updates, big set size

Number of SPEs

(a) 20% of updates, small set size

=3
7
=~
=3
71
=~

Mutex Lock -
Transactional

Mutex Lock ——&—
Transactional —@—

=
S
i

N

=}

=
w
)
&

&
S
=]

Transactions per Second
Transactions per Second

I}
S
~

N
—

»—o & —¢ o

10k

1 2 5 6 1 2 5

3 4
Number of SPEs

(d) 50% of updates, big set size

3 4
Number of SPEs

(c) 50% of updates, small set size

Figure 4: IntSet HashTable

tional version that has its performance increased.

We assume that real applications will use larger transac-
tions than just one single hashtable operation. This assump-
tion is corroborated in the next session when we evaluate
the Genome application. To simulate this scenario with the
IntSet HashTable benchmark, we increased 10x the trans-
action duration as if the application was executing more
work. For this modification, we plotted the same charts as
the original IntSet HashTable. These charts are shown in
Figure 5. Notice that, in this case, the TSC had the perfor-
mance improvement while the mutex lock presented almost
the same behavior.

To analyze the impact of the transaction size in the
HashTable IntSet benchmark we plotted the chart in Fig-
ure 6 using 6 SPEs. It shows that increasing the amount
of work executed inside a transaction, the performance of
mutex-lock degrades drastically while the TSC continues to
perform well, degrading in a near-linear manner.

4.3 Genome: A Real Application

Genome is a gene sequencing multi-threaded applica-
tion. Its input, a set of gene-segments, and output, a set
of sequenced segments, are shared by all threads. It makes
use of the linked-list and the hashtable with a mix of small,
big transactions and also non-transactional code.

We evaluated the Genome with two different sizes of in-
put. The small size has the following parameters: Length
of gene: 500, Length of segment: 16, Number of segments:
2000. The big size has the following parameters: Length of
gene: 4000, Length of segment: 16, Number of segments:

IS}
153
~
w
S
=]

Transactional —@—
Mutex Lock &

./lr’4

Transactional —@—
Mutex Lock L/u

L
/

[~
G
=~

20k

£ 10k
1

2 3 4
Number of SPEs

3
=

I
=

7
1]

ansactions per Second

S
5]

Transactions per Second

5 6 1 2 3 4 5 6
Number of SPEs

(b) 20% of updates, big set size

Tr
Py

w
-~

w
I

(a) 20% of updates, small set size

18k " 30k
Transactional —@—
Mutex Lock -~

Transactional —@—
Mutex Lock e

;/—/0//'

4k

10k

6k 5k
1 2 3 4 5 6 1 2 3 4 5 6
Number of SPEs Number of SPEs

(d) 50% of updates, big set size

)
1=
I

=

Transactions per Second
Transactions per Second

(c) 50% of updates, small set size

Figure 5: IntSet HashTable modified

45k & i — "
Transactional —@—
= ' Mutex Lock - Ao
g 35k
n
b5
&
z 25k
S
g
g 15k "
= A
A"A"“‘A'—A,A‘_A
5k
0 4k 8k 12k 16k 20k

Amount of Extra Work Added

Figure 6: Analysis of transaction size

500000. The charts plotted in Figure 7 shows the perfor-
mance of Genome application for these two configurations.

As we were expecting, the Genome application per-
formed better with the TSC than with mutex-lock, showing
that our assumption that a real application performs more
work inside a transaction than just one hashtable operation
is true.

As the charts show, the Genome application using our
TSC approach obtained a performance gain of 84% with a
big input set using 6 SPEs and a gain of 24% with a small
input set using 5 SPEs, compared to the lock version. Ad-
ditionally, our approach scale much better when increasing
the number of SPEs. In the big input size, the TSC scaled
from 8683.42 transactions per second (tps) using 1 SPE to
to 23451.04 tps (2.7x) using 6 SPE while the mutex lock
scaled from 6346.37 tps to 12723.48 tps (2.0x).

%)
*
-~
IS}
3
2

Transactional —@—

Transactional —@—
- Mutex Lock -

Mutex Lock -g-4-

oW
2 R
= =

"

9
]
=~

=
=

Transactions per Second

b
>
>
Transactions per Second
13
=

1 2 5 6 1 2 5

3 4 3 4
Number of SPEs Number of SPEs

(a) Small input size (b) Big input size

Figure 7: Genome application

The chart of the Genome application with small input
size, presented in Figure 7a, has an anomaly that can be
seen in the mutex-lock performance. This chart shows that
the mutex-lock version decreases the performance rapidly
when running with 3 SPEs and increase its performance
again when running with 4 to 6 SPEs. We suspect that this
anomaly is caused by some odd synchronization behavior of
the Genome’s algorithm implementation. We believe that
this anomaly is amortized or hidden as the input size in-
creases, because this anomaly is not present in the big input
size.

5 Related Work

A number of programming models can be used for the
Cell BE processor, ranging from common parallel program-
ming models (i.e. pipelining, streaming) to Cell BE specific
programming models [9] (i.e. SPU-let, function offload,
device extension, computational acceleration, asymmetric
thread runtime). For a discussion about related work we are
particularly interested in the shared-memory programming
model. It is important to notice that programming models
can be mixed and adapted according to the developer needs.

As have been pointed out before, shared-memory pro-
gramming on the Cell is feasible [13]. Although it is neces-
sary to perform DMA operations in order for the SPE cores
to access system memory, the access latency is in the same
order of magnitude as the latency of a miss in the L2 cache
on conventional architectures.

One of the first abstractions targeting shared memory
programming is that of software cache. One such im-
plementation is currently distributed with the IBM SDK.
The IBM’s XL compiler [5] also provides transparent sup-
port for shared-memory programming through compiler-
controlled software cache and partitioning of code and data.
Software cache also appears in the work of Balart et al. [2].
However, the software cache in their approach is used to de-
couple computation from communication so that the two di-
mensions can be overlapped for better performance. In that
aspect, their technique is orthogonal to ours. Also, none of

the cited works allows SPE code to access shared memory
concurrently, that is, they lack consistency. There has also
been an attempt to implement OpenMP for the Cell archi-
tecture as reported in [12].

A lot of research has been conducted to explore the im-
plementation space for software transactional memory [7,
10, 11]. In the context of this paper we pay particular at-
tention to time-based unmanaged STM systems operating
at the word-level granularity. Our implementation of STM
for the Cell architecture relies on the Transactional Locking
IT (TL2) algorithm [4]. A similar implementation is also
employed by tinySTM [6]. They differ on some relatively
subtle aspects. For instance, tinySTM employs encounter-
time locking whereas TL2 performs locking only at commit
time. An important feature of this class of STM implemen-
tation is that it guarantees that values read by transactions
are always consistent.

The main difference from our implementation to that of
TL2 or tinySTM is that we had to deal explicitly with com-
munication among the cores through DMA. Also, the ar-
chitecture asymmetry required special attention to some as-
pects that are simply transparent in conventional architec-
tures. For instance, the limited amount of local memory in
each SPE (256K) and the implementation of a cache system
in pure software.

6 Conclusions

This work presented a software transactional memory
implementation for an asymmetric architecture, namely the
Cell BE processor.

We implemented and evaluated our TSC model using a
micro-benchmark and also a real-world application. Results
showed a performance gain of 84% with a large input set
and a gain of 24% with the small one for the Genome appli-
cation when compared to a lock-based implementation. Ad-
ditionally, our approach scale much better with the increas-
ing number of SPE cores. We conclude that our approach is
efficient for the benchmarks and the real application evalu-
ated.

One can also argue that, since all the data transfers be-
tween the SPE and the main memory are controlled by the
TSC system, it becomes feasible to control the memory traf-
fic to allow strong isolation. We intend to formalize and ex-
plore this concept in future work. Finally, integrating our
system into a compiler framework will make it possible for
programmers to explore STM on the Cell BE transparently.

7 Acknowledgements

This work was partially supported by CNPq, FAPESP
and IBM.

References

(1]

(2]

(3]

(4]
(53]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

IBM SDK for multicore acceleration: Example library API
reference, version 3.0, 2007.

J. Balart, M. Gonzalez, X. Martorell, E. Ayguade, Z. Sura,
T. Chen, T. Zhang, and K. O’brien. A novel asynchronous
software cache implementation for the cell-be processor.
Proc. of the LCPC 07, 2007.

C. Cao Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An
effective hybrid transactional memory system with strong
isolation guarantees. In Proceedings of the 34th ISCA. 2007.
D. Dice, O. Shalev, and N. Shavit. Transactional locking II.
In Proceedings of the 20th DISC, 2006.

A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu, T. Chen,
P. H. Oden, D. A. Prener, J. C. Shepherd, B. So, Z. Sura,
A. Wang, T. Zhang, P. Zhao, and M. Gschwind. Optimizing
compiler for the cell processor. In PACT '05: Proceedings of
the 14th International Conference on Parallel Architectures
and Compilation Techniques, pages 161-172, 2005.

P. Felber, C. Fetzer, and T. Riegel. Dynamic performance
tuning of word-based software transactional memory. In
Proceedings of the 13th PPoPP, pages 237-246, 2008.

T. Harris, A. Cristal, O. Unsal, E. Ayguade, F. Gagliardi,
B. Smith, and M. Valero. Transactional memory: An
overview. IEEE Micro, 27(3):8-29, 2007.

M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Soft-
ware transactional memory for dynamic-sized data struc-
tures. In Twenty-Second Annual ACM SIGACT-SIGOPS
PODC, 2003.

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy. Introduction to the cell multipro-
cessor. IBM J. Res. Dev., 49(4/5):589-604, 2005.

J. R. Larus and R. Rajwar. Transactional Memory. Morgan
& Claypool Publishers, 2007.

A. McDonald, B. D. Carlstrom, J. Chung, C. C. Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun. Transactional
memory: The hardware-software interface. IEEE Micro,
27(1):67-76, 2007.

K. O’Brien, K. O’Brie, Z. Sura, T. Chen, and T. Zhang.
Support OpenMP on Cell. In International Workshop on
OpenMP (2007), 2007.

M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani.
MPI microtask for programming the Cell Broadband Engine
processor. IBM Systems Journal, 45(1):85-102, 2006.

H. Sutter and J. R. Larus. Software and the concurrency
revolution. Queue, 3(7):54-62, 2005.

