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Abstract— The time-to-market requirements are forcing com-
panies and designers to review their tools and methodologies.
In this paper we have implemented, from scratch, two MP3
hardware decoders using SystemC, one at the RTL level and the
other at the Behavioral level. We have validated them using the
ISO reference specification and synthesized using TSMC 0.13um
technology. To accomplish that, we took 6 designers for 12 months
in the RTL level and 1 designer for 3 months to make 14 design
points in the Behavioral level. We have compared the results and
showed that the better Behavioral design point is faster then the
RTL design and uses almost the same area. The 14 design points
were also analyzed in respect to area, power consumption, energy
consumption and latency.

I. INTRODUCTION

Nowadays, the growing market of mobile devices stimulates
multimedia applications so that everyone can hear its preferred
music or see movies in any place. MP3 is the most used
compression method for audio and was created in 1993 by
the Fraunhofer institute. The algorithm was standardized as
MPEG-1 Layer III (ISO 11172-3) [1], [2]. Using the knowl-
edge of the limitations in the human hearing to eliminate
information without affecting the sound quality perception,
this algorithm obtains a good data compression.

Decoding an MP3 can be done in several different ways:
using a general purpose processor, a dedicated Digital Signal
Processor (DSP) or by a specific hardware decoder. The first
two approaches are very similar, requiring only an off-the-shelf
component or IP-core (the processor itself) and an embedded
software to decode the music streams. The third approach
requires more designers and time, and that is why we are
focusing on two different abstraction levels of doing it: RTL
and behavioral design. In all the cases, the designed decoder
must be fast enough to decode the MP3 stream without
affecting the sound quality.

We designed from scratch two hardware MP3 decoders,
one using the classical SystemC RTL development and the
other using behavioral synthesis. This work compares both
approaches in respect to (1) the software reference model
adopted, (2) the time required to make the design, and (3) the
speed, area and power budgets. Both designs were completed

successfully, have been fully validated using the ISO reference
MP3 samples and have been tested in a FPGA design board.

As final result, the behavioral model was designed in three
months using one designer and created 14 design points, which
are different RTL implementations varying in area and latency.
The RTL design took 6 designers in 12 months to make only
one design point. In the remaining of the paper we show the
tradeoffs and methodologies we used in this comparison.

The rest of this paper is organized as follows: Section
II gives a brief overview of the MP3 algorithm. Section
III shows two of the options we faced while looking for
a reference design and the tradeoff between clean software
(unoptimized) versus optimized software. Next, we describe
both implementations in Section IV, followed by a section
devoted to compare both approaches (Section V). Section VI
discusses related work and we conclude the paper in Section
VII.

II. THE MP3 ALGORITHM

The base unit of coding of MPEG 1 Layer 3, or simply MP3,
is a Frame. One music is divided in pieces of 1152 PCM sam-
ples per channel (2 if it is stereo) and these samples are coded
and encapsulated in a Frame. The small granularity of a Frame
allows the distribution of the MP3 data as stream, each Frame
is independent and self-contained. All information necessary
to decode is stored in the header and in the section of codified
audio data. The header contains basic information about the
MP3 bit-stream like Sample-Rate, Bit-Rate, Channel-Mode,
and others.

The input of the decoding algorithm is an MP3 bit-stream
and the output are PCM audio samples. First, the header is
decoded and the frame is unpacked in different parts. Then
begins the process of data reconstruction, the audio data stored
in the frame must be processed by the Huffman algorithm
and re-scaled, i. e. the values are re-scaled to a wider range of
numbers. After that, the numbers pass trough an alias reduction
filter. Finally the process of audio synthesis will produce the
PCM audio samples. The audio synthesis uses two levels of a
Fourier transform, the first level is a modified version of the
cosine transform and the later is the regular cosine transform.



Fig. 1. MP3 pipeline implementation

Detailed information on the decoding and encoding process
can be found in [1]–[7].

III. REFERENCE MODELS

When talking about MP3, there are dozens of software
implementations available so that the only problem is to
choose a feasible one as the reference model design. We have
looked at two different implementations: LibMad, an Open-
Source library and the dist10 ISO Reference Model, a source
code released by the MP3 ISO standardization group.

The dist10 is a software decoder developed to be ISO
compliance and serve as a reference model to other MP3
software implementations. Because of its didactic purpose, it
is very well documented, easy to understand and does not have
any software optimizations like LibMad.

LibMad is a highly optimized MP3 decoding library that
uses fixed point math. It is a tempting choice because the
apparent easiness of converting the fixed point math code into
the hardware description, compared to the difficulties imposed
by a floating point implementation. Even though, analyzing
more carefully the LibMad, it is easy to understand that all
of its optimizations are just implementation decisions targeted
to improve the software efficiency and does not represent an
asymptotic improvement to the algorithm itself.

When considering those optimizations we found that they
were implemented in such way that software can be more
efficient, however they are not good for hardware imple-
mentation. We noticed that some software optimizations can
make the hardware development more difficult and can get a
worse hardware performance in respect to the used area and
throughput.

The most common example of these optimizations that can
be found in the LibMad is the use of a great amount of

buffers and pre-calculated tables to diminish the amount of
calculations that are executed in real-time. In the hardware,
the usage of buffers considerably increases the area. However,
the accomplishment of a calculation in the hardware can be
cheap (less area) and most of times is easily implemented.
Other common optimization is the use of pointers and dynamic
memory allocation, which can not be easily implemented in
hardware.

Moreover, the optimized software impose difficulties to
understand the algorithm, modify and try different strategies
of implementation by the designer. The clean source code also
has other advantages: commonly it is more modularized and
has a well defined data-flow, so it is easier to maintain and
also helps the operation scheduling when synthesizing, what
affect the latency. So, as a reference model, we choose to use
the dist10 ISO source code. Other reference sources used are
master/doctor thesis [8]–[11] and books [3]–[5].

The source code developed by the ISO group can be found
freely in the Internet, and is commonly referred by the name
dist10. The version used in the project was downloaded from
the website [12].

IV. IMPLEMENTATION

The MP3 decoding can be viewed as a pipeline of 14
stages. Each stage is a procedure that do some computation
over a fraction of the input data. The sequence of decoding
stages is illustrated in the Figure 1. By profiling the software
code, we found out that the last two stages, named DCT
and DCT Window, are responsible for 40% of the CPU time
when running in software and the last seven stages (IMDCT,
IMDCT Window, Overlap, Reorder, DCT and DCT Window)
are responsible for 70% of the CPU time.



The decoder designed directly in SystemC RTL uses the
same architecture illustrated by the Figure 1, where each
pipeline stage is an independent SystemC module running in
parallel with others as a pipeline. This partition permits the
designer to reuse some basic unit modules that are common to
others DSP applications, for example the DCT can be reused in
other audio synthesis application or even in a JPEG implemen-
tation. It also helps the designer to concentrates his efforts in
optimizing the slowest modules. On the behavioral model each
procedure is executed sequentially like the software reference
model. The behavioral synthesis will infer the parallelism on
the loops specified by the designer.

The entire MP3 pipeline was designed in SystemC behav-
ioral level. On the RTL version we decided to left out the first
modules because they represent less than 30% of CPU time
and can be done in software easily. So, on the RTL version we
designed the pipeline from the ScaleFactor Reorder module to
the end. In fact, most of the processing that has to be done
in the first modules are related to header unpacking and error
detection and are, usually, performed in software.

Even though, when comparing the RTL and the behavioral
level version we always compare the area and latency cor-
responding to the part of the pipeline from the ScaleFactor
Reorder module to the end. But when comparing the different
design points of the behavioral level only, we use the entire
pipeline.

We selected SystemC as a design language to have both
RTL and behavioral versions implemented in the same lan-
guage. The behavioral version was synthesized using the Forte
Cynthesizer tool set.

A. Design Space Exploration

When making code modifications to optimize the hardware,
the designer must concentrate his effort in the critical part of
the algorithm. The software profiling can show where is the
most CPU time consuming part and in the case of the MP3, the
hardware design followed the pattern showed by the software
profiling. In both the RTL and the behavioral implementation
the bottleneck is the DCT module, that consumes 40% of CPU
time as mentioned in previous section. Modifications in this
module leads to expressive differences in latency.

The RTL MP3 implementation had a total latency of 300
cycles and the DCT had a latency of more than 250 cycles, the
worst latency of the RTL modules. The RTL designers made
an effort to implement another DCT with a better latency but it
could not be characterized to run at the desired frequency with
the used technology. The DCT is the most difficult module the
RTL designers faced. The chain of arithmetic operations of the
cosine transform impose a crucial tradeoff. If the operations
are concatenated in the same clock cycle it can lead to a long
critical path and could not fit in the desired clock cycle, or if
the designer divides the operations in more cycles it leads to
a longer latency. The RTL designers had chosen the second
option.

Another difficulty the RTL designers faced was related to
the pipeline synchronization. When implementing the pipeline

stages the designers had chosen to use a complex handshake
between the modules and independent buffers in each module
to make the development easily. We believe that the use of a
simplified handshake and shared buffers between the modules
could improve the pipeline efficiency.

The complexity of designing the RTL MP3 from scratch did
not allow us to apply an extensive design space exploration.
So, the design space exploration was achieved only on the
behavioral model.

On the behavioral synthesis we focused the modifications
only in the inner loops of the critical modules, the DCT and
IMDCT. We were able to achieve 14 completely different
synthesis results. Each design point generated contains a
full RTL implementation of the design. This facility helps
the designer to select between different tradeoffs in typical
designs. Two of the most important design optimizations we
did are described bellow:

Loop Unrolling: We have unrolled four small inner loops in
critical modules and got a latency reduction of 53%
(from 541 cycles per sample to 243) at the cost of an
area increase of only 6%. If we go further and also
have set the synthesis tool schedule police ASAP
(as soon as possible), the latency reduction goes to
67% but the area increase goes to 40%. These are
the kind of tradeoffs designers face when using loop
unrolling.

Loop Pipelining: We selected the same four small inner
loops in critical modules to apply the loop pipelining
optimization and got a latency reduction of 42%
(from 541 cycles per sample to 294) at the cost of an
area increase of 34%. If we again apply the ASAP
schedule, the latency reduction goes to 65% and the
area increases 60%.

All the design points will be shown in Section V.

B. Verification
Both models were tested in a similar way, by following

the classic structure (see Figure 2): a set of input files and
the respective output golden files. The input files are MP3
encoded files. Some of them came together with the dist10
source code and others were produced to achieve a better
coverage of encoding parameter combinations. The output
golden files were produced decoding the MP3 files using the
dist10 implementation.

Fig. 2. MP3 verification methodology

The golden outputs are based on the PCM generated by
the dist10 compiled with g++. All comparisons between the
golden outputs and the hardware decoded outputs are done in
a RMS (Root Mean Square) manner, in the way imposed by
the ISO standard:



• RMS = sqrt( 1
N × sum(diff2))

• RMS must be < 2−15

sqrt(12) relative to scale
• Max absolute value of diff must be 2−14 relative to scale

V. RESULTS AND COMPARISON

To compare both approaches, we selected two different
groups of designers, group one with six designers to im-
plement the RTL and group two with only one designer
to implement the behavioral model. All the designers were
undergraduate students with about the same knowledge level
in signal processing and hardware design. They also received a
set of training courses on SystemC RTL and behavioral design.
The group one took 12 months to finish their design from
the Scale Factor Reorder module to the end of the pipeline
that corresponds to about half of the pipeline. The second
group took only 3 months to finish all the design points in
the behavioral description with the full pipeline implemented.
Both designs were verified as shown in the previous section.

A. RTL Versus Behavioral

The first comparison we made focused only on the RTL
design and the behavioral design point with basic configu-
ration. In order to do this comparison we synthesized both
designs from the Scale Factor Reorder module to the end
of the pipeline (not the full pipeline), because the RTL
design has only this part of the pipeline implemented as
mentioned before. Using this part of the pipeline the RTL
design had a latency of 300 cycles per sample and an area
of 171Kum2 while the behavioral design had 196 cycles
per sample and an area of 176Kum2. Table I shows the
behavioral basic configuration and the RTL design with the
pipeline synthesized from the Scale Factor Reorder module to
the end and their corresponding Area (in um2), Latency (in
cycles) and Development time (in months). Therefore, with
a shorter development time, using the behavioral synthesis, it
is possible to get a better design in terms of latency (35%
better) and almost the same area (3% worse). This synthesis
was targeted to a TSMC 0.13um technology library.

TABLE I
BEHAVIORAL AND RTL DESIGN WITH HALF PIPELINE SYNTHESIZED

DP Area Latency Development time
Behavioral 176 196 3

RTL 171 300 12

The big difference in the success of the Behavioral design
over the RTL can be explained by two main reasons:
• The undergraduate students from both groups had none

experience in hardware development prior to this project
and the RTL design had to be optimized by the students
themselves while the behavioral design had the help of
the behavioral synthesis tool in the optimization. So,
it can explain why the behavioral design has a better
latency.

• The reference model in C is easier to be transformed in a
synthesizable behavioral model, while the RTL has to be

entirely implemented from scratch. It can explain why the
RTL took so long to implement only half of the pipeline.

Therefore when training a workforce to the behavioral
development model, the learning curve is shorter and can
generate better results.

B. 14 Behavioral Design Points

The second comparison focused only the behavioral syn-
thesis and was between the basic configuration without loop
unrolling or pipelining and the different strategies of loop
unrolling and pipelining. Following the experiments, we syn-
thesized the complete pipeline (including the first stages)
using the behavioral design and generated 14 design points
in contrast to only one design point of the RTL design. All
the design points were synthesized to run at 100MHz using the
same TSMC 0.13um technology library. Table II shows all the
design points produced by the behavioral synthesis and their
corresponding Area (in um2), Latency (in cycles), Power (in
mW) and Energy Consumed to decode an MP3 stereo frame.

The Power was measured using the Synopsys Power Com-
piler tool with the RTL synthesized version of each design
point and decoding an MP3 stream. Considering that an stereo
frame two channels of 1152 PCM samples each the Energy
consumed to decode an stereo frame can be calculated as:
Energy = 2 ∗ 1152 ∗ Latency ∗ Power/Frequency

The first design point (DP 1) was synthesized with the
basic configuration without loop unrolling or pipelining. It has
the best area (243um2) and one of the worsts latencies (511
cycles). It has also the one of the smallest power consumption
but, since it has a very big latency compared to the others, the
amount of energy required to decode a sample is very high
(1863× 10−6J).

TABLE II
THE BEHAVIORAL 14 DESIGN POINTS AT 100MHZ (FULL PIPELINE)

DP Area Latency Power (mW) Energy (10−6J)
1 243 511 158 1863
2 325 381 158 1391
3 284 361 161 1345
4 254 290 161 1080
5 268 242 162 905
6 260 259 161 966
7 411 170 164 643
8 379 169 162 632
9 325 294 163 1105
10 331 473 158 1727
11 390 178 162 664
12 330 184 161 686
13 293 801 156 2879
14 292 1433 155 5117

We have plotted some graphs to show this data. In all
graphs, the design points 13 and 14 are not shown because
they are too distant from the others and could confuse the
visualization of the other points. Figure 3 shows the Area
X Latency tradeoff. In this graph, the best designs are the
ones near the margins, having a good Area or a good Latency.
Particularly the design points 4, 5 and 6 are the nearest to the



origin, representing the better points to choose in this case.
If the user wants a better Latency, say 170 cycles, he/she can
choose the DP 7 at the cost of an area of 411um2.
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Figure 4 shows the tradeoff between area and power but the
user should also be aware of the amount of energy required to
decode an MP3 frame by the decoder, as shown in Figure 5.
Indeed, the Power axis in Figure 4 has a very small difference
between the better and the worse but the Energy axis in Figure
5 is more coarse. The DP 1 can be selected if the designer
look only Figure 4 as the design with best power consumption
but this data is incomplete because DP 1 is exactly the one
with the worse latency as shown before.
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The other set of experiments we did is related to the
minimum required frequency of operation for each design
point. Since they differ in latency, the required frequency could
be reduced in a different way for each one. To calculate the
minimum frequency, we choose the frequency by which the
decoder is able to decode the double of the maximum output
data rate of the MP3. We doubled the number as a safety
margin since there will be buffers in the outside margin of the
decoder and we do not want the decoder to stall waiting for
them. To get a CD-quality audio we must have a data rate of
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44100 samples per second. So the new Frequency is calculated
as: NewFreq. = Latency ∗ 44100 ∗ 2

The results are in Table III. The column Freq. has the
calculated frequency and the new Power column now shows
the big difference between the first and the other design points.
This can be shown in the Figure 6, in contrast with the previous
version (Figure 4) and similar to the Energy graph (Figure 5).

TABLE III
NEW FREQUENCIES FOR THE DESIGN POINTS

DP Area Latency Freq. Power Energy
(Mhz) (mW) (10−6J)

1 243 511 45 71 1863
2 325 381 34 53 1391
3 284 361 32 51 1345
4 254 290 26 41 1080
5 268 242 21 35 905
6 260 259 23 37 966
7 411 170 15 25 643
8 379 169 15 24 632
9 325 294 26 42 1105
10 331 473 42 66 1727
11 390 178 16 25 664
12 330 184 16 26 686
13 293 801 71 110 2879
14 292 1433 126 195 5117

VI. RELATED WORK

Diniz, So and Hall [13], developed a compilation system
that maps high-level algorithms written in C to application-
specific designs for FPGA and loop transformations to achieve
design exploration. They evaluated five small applications such
as FIR filter and Matrix Multiply.

Chtourou and Hammami [14] presented a methodology for
SystemC behavioral synthesis and design space exploration
using the Synopsys tool CoCentric SystemC Compiler. They
evaluated 3 small applications: FIR, FFT and FIFO.

The work presented in this paper differs from previous
efforts mainly in the size of the application evaluated. When
a big application is being designed, the effect of the software
reference model chosen has an important role on the success
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of the design space exploration. This effect is not considered
in the related papers. Furthermore, they do not compare the
behavioral level development and its design space exploration
to the classical RTL development.

VII. CONCLUSIONS

This paper presented a hardware implementation, design
exploration and evaluation of an MP3 decoder fully designed
in both behavioral and RTL SystemC. The MP3 decoder was
validated in both abstraction levels on an FPGA by fully
decoding ISO standard MP3 streams.

By using a commercial behavioral synthesis tool, targeted to
a 0.13um technology, and a single designer working during a
period of three months, we were able to make a wide design
space exploration producing 14 different design points with
latencies ranging from 170 to 1433 cycles, and areas from
243um2 to 411um2. One of the best design points we found
used 268um2 of area and 242 cycles of latency. The same
MP3 hardware decoder application, when designed directly
in SystemC RTL, required six designers over one year to
produce a single design point. Comparing the RTL design
to a behavioral design point with same area, the behavioral
design is 33% faster than the RTL. Furthermore, we point out
that when training a workforce to the behavioral development
model, the learning curve is shorter and can generate better
results.

As part of our design exploration methodology, we evalu-
ated two different C source-code reference designs: LibMad,
a highly optimized MP3 decoder software library, and the ISO
reference design, a non-optimized, clean and easy to under-
stand code. While transforming these two reference designs
into behavioral code, we found that calculating data on-the-fly
as described in the non-optimized software version, produced
much better hardware (less latency and less memory usage)
than the highly optimized software implementation which uses
pointers and pre-calculated data tables. Therefore it leads to
the conclusion that the use of an optimized software as direct
reference for the hardware project does not imply an optimized
hardware. The opposite can occur: there is a great risk of

getting a much less optimized hardware from an optimized
software. Also, the choice of reference model is crucial to the
success of design space exploration.

Another conclusion is that, when looking for a variety set
of configurations, like the 14 design points generated by the
behavioral synthesis tool, the designer needs to take care about
the meaning of the results he/she has. We have showed in some
graphs that one design point that appears to be the better in
area and power requirements, in fact, has the worse energy
consumption because of its high latency.

Finally, we conclude that the Behavioral synthesis tool can
be a good alternative to create several design points, allow
designers to make better decision in the latter phases of the
design and also allows an improvement in the productivity (in
our case, 4 times faster with 6 times less designer).
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