T-DRE: A Hardware Trusted Computing Base for Direct
Recording Electronic Vote Machines

*
Roberto Gallo
University of Campinas
Campinas, SP, Brazil
gallo@ic.unicamp.br
gallo@kryptus.com

Rafael Azevedo
Tribunal Superior Eleitoral
Brasilia, DF, Brazil
rafael@tse.gov.br

ABSTRACT

We present a hardware trusted computing base (TCB) aimed
at Direct Recording Voting Machines (T-DRE), with novel
design features concerning vote privacy, device verifiability,
signed-code execution and device resilience. Our proposal
is largely compliant with the VVSG (Voluntary Voting Sys-
tem Guidelines), while also strengthening some of its rec-
comendations. To the best of our knowledge, T-DRE is the
first architecture to employ multi-level, certification-based,
hardware-enforced privileges to the running software. T-
DRE also makes a solid case for the feasibility of strong se-
curity systems: it is the basis of 165,000 voting machines, set
to be used in a large upcoming national election. In short,
our contribution is a viable computational trusted base for
both modern and classical voting protocols.

1. INTRODUCTION

Electronic voting systems (EVSs) are a very interesting
subject, as they are comprised of system components which
interact within an complex environment with boundary con-
ditions of different nature, legal, cultural, logistical and fi-
nancial. Several countries have adopted EVSs, tailoring
them to meet their specificities.

The Brazilian voting system currently has over 135 mil-

*Partially funded by KRYPTUS and SERASA Experian re-
search grants

TPartially funded by FAPESP (2007/56052-8), CNPq
(309491/2008-8), and SERASA Experian research grants

Ipartially funded by FAPESP (2010/14492-4) and CNPq
(305371/2009-6) research grant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA

Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

Henrique Kawakami
KRYPTUS Cryptographic
Engineering Ltd.
Campinas, SP, Brazil
kawakami@kryptus.com

Saulo Lima
Tribunal Superior Eleitoral
Brasilia, DF, Brazil
saulo@tse.gov.br

191

. T
Ricardo Dahab
University of Campinas
Campinas, SP, Brazil

dahab@ic.unicamp.br

Guido AraujoiE
University of Campinas
Campinas, SP, Brazil
guido@ic.unicamp.br

lion registered voters [2], with variable literacy degree. Thus,
electronic voting is a very simple procedure, which con-
sists of typing candidates’ numbers on a reduced keyboard,
guided by simple instructions on a small screen. Brazil
adopted Direct Recording Electronic voting machines (DREs
from now on) in 1996. In 2009 a decision was made to re-
place part of the aging hardware base with a newly designed
version, while maintaining backward compatibility.

Voting Systems Fundamental Goals

In spite of local constraints, EVSs share six common, fun-
damental, goals (Sastry [24]):

Goal 1. One voter/one vote. The cast ballots should ex-
actly represent the votes cast by legitimate voters. Ma-
licious parties should not be able to add, duplicate, or
delete ballots.

Goal 2. Cast-as-intended. Voters should be able to re-
liably and easily cast the ballots that they intend to
cast.

Goal 3. Counted-as-cast. The final tally should be an
accurate count of the ballots that have been cast.

Goal 4. Verifiability. It should be possible for participants
in the voting process to prove that the voting system
obeys certain properties.

Goal 5. Privacy. Ballots and certain events during the vot-
ing process should remain secret.

Goal 6. Coercion resistance. A voter should not be able
to prove how she voted, to a third party not present
in the voting booth.

These goals are related (e.g. a voting system that does
not satisfy goal 5 will hardly satisfy goal 6) and potentially
conflicting (e.g. it is not trivial to build a voting system
that is totally verifiable while preserving voters’ privacy).
Third-party end-to-end verifiability has been a recurrent
subject [20]. Usually, verifiability is linked to the concept
of (statistical) confidence level. Different cultures, and thus
electoral laws, have different thresholds for the level of con-
fidence they consider adequate for the electoral process.

Software independence is not enough. Different vot-
ing protocols [3, 17, 5] have been proposed to meet the
above goals, with variable degrees of success and effective-
ness. Unfortunately, most of them can be defeated by com-
promised software or hardware running in the underlying
computing base. In order to mitigate such threats, software-
independent systems were proposed by Rivest and Wack [21]:
A wvoting system is software-independent (SI) if an unde-
tected change or error in its software cannot cause an un-
detectable change or error in an election outcome. However
strong, this concept ensures most of the above requirements
but not all.

For instance, coercion resistance and vote privacy are es-
pecially susceptible to attacks based on tampered hardware
and software, as vote input devices themselves can leak in-
formation [12, 22, 24]. Hardware protection and verification
is thus an essential aspect, regardless of whether SI systems
are employed or not. While some effort has been done to-
wards the specification of hardware functionalities in order
to provide sufficient device accreditation and tamper resis-
tance [19, 8, 24], there is much room for improvement on
the path to feasible implementations. Here we follow that
path, presenting a hardware trusted computing base (TCB)
for direct recording electronic voting architecture, T-DRE
in short, suitable for a variety of existing voting protocols
and systems.

Summary of our Contributions

Our contributions are present both in the novelty of the T-
DRE components and in their composition. Namely, we
propose a trusted hardware architecture that extensively
employs signed code execution with hardware-enforced ac-
cess control to peripherals in order to prevent a number of
attacks. Further advancements include human-computable
device integrity verification mechanisms, strong accountabil-
ity, and improved signed-code execution assurance, all sup-
ported by a certification hierarchy which takes advantage of
the proposed hardware.

The T-DRE architecture described herein was adopted by
the Brazilian National Election Authority (Tribunal Supe-
rior Eleitoral - TSE). In order to fully validate the speci-
fication, we first implemented a prototype evaluation plat-
form. Subsequently, the specification was realized by a
vendor under TSE’s control, using another hardware plat-
form, and taking into account additional costs and strin-
gent field, legal, and resilience restrictions, while maintain-
ing backward compatibility with the deployed base. This
endeavor, which resulted in 165,000 produced units, further
supports our claims on the feasibility of the architecture.

Our proposal is not an airtight solution to electronic vot-
ing; we discuss its limitations in Section 5. However, we do
claim that it provides a layer of security to SI and non-SI
systems alike, whose strength is degrees above that of vot-
ing systems currently deployed around the world, by making
it extremely difficult and costly for a fraud attempt to go
undetected. Also, although we target centralized elections,
in Section 4.2 we discuss how T-DRE can be naturally ex-
tended to decentralized environments such as in the USA.

This paper is organized as follows: Section 2 gives practi-
cal goals and boundary conditions of voting systems; Sec-
tion 3 discusses related work; Section 4 details our pro-
posal; Section 5 reports implementation efforts; Section 6
concludes, with ideas for future work.

2. VOTING SYSTEMS PRACTICAL GOALS
AND BOUNDARY CONDITIONS

Attaining the fundamental goals is subject to practical
boundary conditions, especially in large elections. Three
important constraints are:

Availability. Voting systems must be available during the
critical periods (election day, tallying, etc.) and resist
denial of service attempts. DRE machines must resist
tampering;

Credibility. An aspect of utmost importance, it is at the
basis of fair representativity. Accordingly, implemen-
tations of voting systems should minimize the chance
of operational errors and resist tampering. Here, again,
DRE hardware security and verifiability plays an im-
portant role;

Resource Rationalization. The practical realization of vot-
ing systems should take into account various cost-related
variables, such as auditing and hardware cost and main-
tenance. When security is considered, a clear budget
trade-off exists between built-in security mechanisms
and the security procedures employed by the Electoral
Authority (EA). While the first is typically a one-time
expenditure which is multiplied by the number of DRE
machines, the second is recurrent, flexible, and propor-
tional to the number of polls. The security targets for
DRE machines must take this into account.

Security Targets

The specification of security targets should make provisions
for many different variables (Common Criteria [27]). In face
of the current Brazilian Electoral Laws, the following vari-
ables demand special attention:

Window of opportunity. Our implementation should take
into account that attacks on DRE machines can occur
at any time, but more easily in the interstices between
elections. Pre-election time is the most vulnerable due
to transportation of DRE machines across huge dis-
tances.

Surface and scope of attacks. Voting machines are sub-
ject to different levels of adversarial exposure between
procedural checkpoints established by the EA: during
election interstice, an adversary can have physical ac-
cess to the DREs; in the pre-election (setup) phase, ad-
versaries may have media (logical) access to the DREsS;
at election day, adversaries typically have only opera-
tional access to DREs, as all non-HID I/O are sealed
and the machines operate offline. Our security tar-
get take these conditions into account. It provides
tampering resistance and tampering evidence on the
Critical Security Parameters (CSP) such as keys and
key counters, with a physical security target of FIPS
140-2 level 3 [18] (passive resistance). Moreover, a suc-
cessful attack must have limited scope - breaking one
DRE should not increase the chances of an adversary
of breaking another.

Level of adversarial expertise. Attacks on a DRE, es-
pecially those which adulterate or recover key material
or CSPs, must demand multiple experts, considerable

time (impossible to execute during election day) and
removal to a laboratory with special equipment.

Audit control points, mechanisms and equipments.
Audit points shall be precise, clear and accessible. There
should be an audit point aggregator that simply ex-
presses the DRE’s state (fully operational, in error, in
service). The interpretation of this audit point should
not require additional equipment nor complex proce-
dures, being accessible to all parties involved in the
electoral process: voter, electoral authority, poll worker,
and party advocates.

3. RELATED WORK

In this section we discuss related work regarding T-DRE’s
features.

3.1 Signed Code Execution

Signed code execution [4, 1] is an important tool in vot-
ing systems [23, 28]. Many security issues faced by EVSs
can be directly mitigated by the proper use of signed code
execution. Benefits include:

e ensuring that only official voting software is executed
in DREs, enhancing resilience against deliberate adul-
teration and operational errors which may violate EVS
fundamental goals such as vote secrecy and coercion
resistance;

e tracing and accountability of incidents, enabling secu-
rity through legal means;

e simple verification of binaries’ integrity in pre, intra
and post-election phases, which facilitates auditing by
parties, voters, and the Electoral Authority.

Hardware-based signed code execution can be achieved
by various means, the de facto standard being the Trusted
Computing Group (TCG, now ISO/IEC 11889) Personal
Computer Trusted Platform Module (TPM) [11], a com-
panion chip to the main system CPU, usually connected via
LPC bus. The TPM has functional characteristics similar
to a smart card. In cryptographic terms, the TPM per-
forms several operations: key generation, storage and use
of cryptographic keys, protected by a key that represents
the system’s root of trust. Moreover, unlike typical smart
cards, the TPM has mechanisms for software attestation,
which allows certain running application parameters to be
anonymously verified and certified as not tampered. The
module is recommended by the VVSG ([28], Section 5.5.1)
for protection of the DRE software stack.

One of the drawbacks of PC TPM modules is that they
work passively, in hardware terms, with respect to the main
system CPU. TPMs, by design, can be completely bypassed
by the system’s boot sequence if the BIOS (especifically, the
“Core Root of Trust for Measurement”, CRTM) is tampered
with, and thus “deceived” when used in application verifica-
tion tests. Extensions to the TPM as the TEM from Costan
et al [6], being also passive with respect to the CPU, repre-
sent no improvement in this regard.

To overcome this master-slave problem, one can consider
the sole use of secure processors as the main component
of a TCB aimed at DREs. However, even state-of-the-art
processors with security features, such as AEGIS [26], USIP-
PRO [13] and Cell [25], suffer from impeditive shortcomings.

193

While the AEGIS specification is completely open, to the
best of our knowledge there are no commercially available
realizations of it. The USIP-PRO, in turn, has limited pro-
cessing power, its architecture is proprietary and the vendor
makes no assertions regarding memory protection against
data modification. Finally, the Cell processor is proprietary,
not allowing full access to hardware features from indepen-
dent software vendors, thus adding undesirable obscurity to
the design.

3.2 Key Management and Certification

Entertainment platforms have guided the industry regard-
ing the execution of signed code for DRM purposes. Mi-
crosoft’s Xbox [10] and Sony Playstation 3 execute only code
signed by keys directly under vendors’ root CAs. With the
Cell Processor [25], Sony advances further: unsigned code
running on PS3 has limited access to the device’s peripher-
als, notably the GPU. Only signed code has full access to
hardware features. The VVSG (Section 5.5.1) forbids non-
signed code from running on DRE hardware, similarly to
console platforms. The VVSG also recommends a TPM-like
component for controlling software execution.

In addition to certifying (signing) the voting machine soft-
ware stack, cryptographic key material is extensively used
in many voting systems [28, 23, 3, 16, 17] for other reasons,
from voting, to producing closeout records, audit log signa-
ture and verification, to encryption/decryption of votes and
other sensitive material.

Although key management and storage could be handled
in software by the DRE, cryptographic tamper-resistant hard-
ware is preferred. The VVSG recommends the existence of
a hardware tamper-proof signature module (SM) in DREs,
whose primary function is to manage the life cycle of two
asymmetric key pairs: i) the Election Signature Key (ESK),
a unique per-election/per-device key used to sign votes and
closeout records; and b) a per-device DRE Signature Key
(DSK), which identifies the device and is used to produce
certificates for the ESK. The usage of DSK and ESK is
strictly controlled by the SM by means of two counters:
CountESK and CountDSK. CountDSK counts the number
of generated ESK certificates ever signed by DSK. CountESK
counts the number of ESK usages. When the closeout record
is produced, ESK is erased by the MSM and both counters
are included in the resulting record.

3.3 DRE System Verification

Easy auditing is a paramount requirement for voting sys-
tems as it is central to the establishment of trust on the
DREs’ integrity and correct operation. The concerns with
integrity verification of the entire DRE system stack (hard-
ware, firmware, and software) are not new. Although auxil-
iary devices (software or hardware) can be used, ideally so-
lutions should provide effective user-computable verification
mechanisms of the DRE integrity, so that less, not more,
hardware and software components are used to verify the
main system. In this sense, device integrity verification it-
self should be also software-independent.

Sastry [24] describes a handful of desired DRE verifying
properties, mainly aiming at software insulation, by con-
structing a proof-of-concept DRE with multiple (seven) pro-
cessors. Gennaro et al [9] establish a condition for tamper-
proofness of general hardware and give some clues on how
to check device integrity by means of cryptographic chal-

lenges. Oksiizoglu and Wallach [19] present, in VoteBox
Nano, an elegant human-verifiable software and firmware
(FPGA bitstreams) checking mechanism based on random
“session identifiers”, which change every time the DRE is
rebooted. Gallo et al [8] generalize Gennaro et al’s con-
ditions, prototyping a human-readable, cryptographically-
strong system verification method called Time-Base One-
Time Verification (TOTV), which allows for multiple device
verification in a trust amplifying fashion, making humans
part of the verification protocol. Although both [19, 8] can
be used by poll workers and party advocates to assert DRE
integrity, they are not practical for large-scale verification
by voters, as they require comparison of multiple digit veri-
fication numbers, a hindrance when illiterate voters are con-
sidered.

4. OUR PROPOSALS

4.1 The T-DRE Architecture and the Master
Security Module

The T-DRE architecture was devised to meet security and
availability requirements, as well as cost restrictions. Some
key requirements are:

e (R1) Run solely signed code, even if the opponent has
operational access to the DRE media.

e (R2) Enforce the verification of the entire software
stack, from the BIOS to the voting application, estab-
lishing an effective software trust chain;

e (R3) Allow the system state (integrity) to be widely
attested by any user. Voters, party advocates and the
electoral authority (EA) should be able to verify the
integrity of the DRE without additional electronic de-
vices;

e (R4) Resist physical and logical attacks, preventing
unauthorized access to key material and application
tampering;

e (R5) Contain only fully auditable components, en-
abling thorough system verification by the EA and the
society;

e (R6) Allow the use of low cost, widely available hard-
ware components, with reasonable computing power
and fully open source development chain;

e (R7) Allow maintenance of the DRE machine and up-
grade of its cryptographic mechanisms during its long
expected lifetime (10 years);

e (R8) Enable and ease software and firmware devel-
opment cycle, including field testing and simulations;
allow faithful simulations which are clearly verifiable
as such, which includes the production of non-valid
results only.

In order to achieve these objectives, we based our proposal
on the fundamentals of secure hardware presented by Gen-
naro et al [9] and Gallo et al [8]. The latter introduces the
concept of cryptographic identity, which states conditions
for the establishment and verification of a root of trust for
general secure hardware. Both suggest the use of their ver-
ification schemes in DREs. Here we go further, presenting

194

printer | in HID RTC printer display
CPU pool display CPU pool
BIOS ‘ RAM/ROM TRNG in SHID RAM/ROM
PC-TPM RTC BIOS out SHID T-DRE

Figure 1: PC-TPM architecture (left) and the T-
DRE architecture. The T-DRE components sur-
rounded by the dotted box are under physical pro-
tection; BIOS physical protection is optional. Dark-
gray components are under MSM direct control.

a DRE system architecture which also brings new control
mechanisms and a new verification method (Section 4.3).

Our architecture is depicted in Figure 1, along with a clas-
sical PC-TPM system. In both, the CPU pool (one or more
main processors) is the main processing unit, which runs the
voting application (and software stack). In the PC-TPM
design, the CPU pool is the bus master of all peripherals,
including the TPM chip, which can be completely bypassed
by tampered software at boot time. There is no way for the
TPM to prevent CPU access to peripherals, nor to inform
users that non-signed code is running.

The T-DRE Architecture, in contrast, is fundamen-
tally different from the PC-TPM: the security is based on
the proposed Master Security Module (MSM), which con-
centrates the DRE’s cryptographic mechanisms and controls
system peripherals (encrypted voter keypad, poll worker ter-
minal, status lights), BIOS, and CPU pool. This centraliza-
tion allows for a multi-level certification-based peripherals’
access policy which can be enforced on the software running
on the CPU pool. This is further explained in Section 4.2.
The MSM control over the human interface devices (HID)
also plays crucial role in our solution. Its implications are
explored in Section 4.3. The MSM is also a CID-enabled de-
vice, i.e. a device whose root of trust, represented by a cryp-
tographic key, is bound to the device’s physical integrity:
crossing the cryptographic boundary is highly likely to cause
the device’s root key destruction (and thus its identity), pre-
venting the production of valid closeout voting records.

The T-DRE Software Verification, in contrast to PC-
TPM, allows for full software stack verification, including
BIOS. Prior to the CPU boot, after the DRE hardware
power-up, the MSM checks the authenticity (and possibly
decrypts) the BIOS contents; only if a valid (signed) BIOS
is found, the CPU pool is able to boot. Now the CPU
runs signed code from the very beginning of the boot se-
quence and is able to use the MSM to check the remaining
of the software stack (bootloader, O.S., voting applications,
scripts, configuration data). The differences between the
T-DRE and the PC-TPM boot processes are illustrated in
Figure 2. It goes beyond VVSG’s required signed code ver-
ifier hardware module (VVSG, Section 5.5.1).

Both the T-DRE peripheral architecture and the software
verification mechanisms are novel to DREs. Moreover, the
MSM also acts as a VVSG Signature Module (VVSG Sec-
tion 5.1.2). In spite of these advancements, our architec-
ture can be implemented with off-the-shelf electronic com-
ponents, enabling secure, fully auditable systems and low
cost realizations. In Section 5 we describe a prototype using
only commodity, general purpose components.

chk — BIOS
J CRTM (RoT) [\ [MSM (RoT): key, CSPs ﬁ
- [3}
| TPM: key, other CSP | S tsvc_z
sign =
tcrypt_ bootloader, [5} crypt_| bootloader, _f ©
sve |O.S., VoteApp| g £ = sve |O.S., VoteApp | g =%
—_— E Q —_— E Q.
Data 2 Eﬂ Data 2 Eo
(bulletin, log) |4® & (bulletin, log) | ¢ @

<

Figure 2: Verification chain for code execution, PC
TPM and our proposed MSM

4.2 Hardware-Reinforced Certification-Based
Privileges

Satisfying Section 1 goals (in special privacy) and Sec-
tion 4.1 requisites (in special R3, 5, 7, and 8) requires strict
control over the DRE software. Only official (highly au-
dited) voting software must be able to produce valid close-
out records. Maintenance (loosely audited) software must
be prevented from accessing the DRE’s key material (thus
preventing production of valid closeout records) and from
running an apparently valid, but otherwise fake poll (thus
breaking privacy). Also, voting software being developed
must be able to exercise all DRE features without being
able to produce valid tallies or deceiving voters.

To attain the desired software control, we combined the
MSM’s control over the DRE’s peripherals and the running
software stack, with a custom key hierarchy based on Public
Key Infrastructure (PKI) technology (with established pro-
cedures and audit controls), thus reducing required audit
points. Our proposal centers the confidence of the electoral
system on the EA root certification authority (EA-rootCA),
which is audited (cryptographically) by the parties and the
society. Figure 3 illustrates the PKI architecture with its
three intermediate CAs, VoteCA, Devel CA, and ServiceCA,
each with distinct purposes and privileges. In common,
these CAs are responsible for”: a) managing the DSK cer-
tificate life cycle; b) signing the DRE’s software stack; and
¢) decrypting any messages coming from the DRE, when
the voting protocol so demands. Software signed under each
certification branch has different execution privileges and
access to different key materials. Each DRE has three DSK
certificates (and key pairs), one for each tree branch. All
DRE certificates (and corresponding keys) are stored within
the MSM, which controls both the key usage and the signed
code execution privileges.

Vote CA Branch: Binaries signed under this branch
have total control over the DRE hardware and are used in
the actual election days - they have access to the official
voting key material (DSKyote, ESKyote), producing valid
election closeout records, controlling the voter’s keypad use,
the poll worker’s keypad use, and the access to the Secure
Output HID (Section 4.3). The MSM is responsible for en-
forcing the privileges of the signed code over the DRE hard-
ware, without any software interference.

Development CA Branch enables the necessary func-
tions for development and election simulation activities |,
granting restricted access to peripherals and keys: i) the
MSM produces signatures only with DSKgever, FSKaevel,
Othergever keys; and ii) the signed code has no access to the

195

EA Root CA

cert

cert

enc

u3I1s Ipod.
1dA109p.

Devel CA |\ |Service CAN
R A Lo) - g
© Vote |4 Service |&%
Certs Keys Certs Keys :
\H
53
O

Vote bulletin, Devel bulletin, Service
logs logs data

VoteApp SW, DevelApp Test SW,
data SW, data keys

Figure 3: Certification hierarchy, code and data, and

key usage
CA VoteCA Devel CA ServiceCA
Privilegies
Key (DSK)vote (DSK)de'uel DSKservice
Material (ESK)vote (ESK)devel
(Others)vote | (Others)dever
Input HID Full Full Restricted
access
Output HID Full Full Only test
access results
Security API Full Restricted None
(Secure HID)

Table 1: Signed code execution privileges for our
DRE proposal; MSM enforcement

secure output HID which signals valid polls. This prevents
in-development code from being used to deceive voters, and
easily distinguishes valid signatures on real closeout records
from those produced under simulation.

Service CA Branch enables DRE maintenance (mem-
ory, battery, peripherals testing and systems components
replacement). Servicing operations are highly distributed,
thus hard to audit. Under ServiceCA, signed code is not al-
lowed access to keypads nor the secure output HID nor any
ESK key material. The allowed operations are: a) re-pairing
the input/output of cryptographic devices, and b) signatures
of maintenance logs. Table 1 summarizes the privileges en-
forced by the MSM in each certification branch.

Other Considerations: Although our proposal targets
centralized elections, it can be naturally extended to de-
centralized scenarios, as those in the USA, by adding Lo-
cal Electoral Authorities CAs (as additional intermediate
CAs) to the tree of Figure 3. Then, each local author-
ity would maintain three CAs (VoteCAjocar, DevelCAjocal,
ServiceCAjocqr). This allows a great deal of independence
and flexibility, where local authorities can produce and run
their own software without depending on the national au-
thority. Furthermore, DREs can be easily shared by local

authorities.

4.3 T-DRE Verification: Secure Human Inter-
face - S-HI

Integrity verification schemes provide variable confidence
level in their output. As a rule, the better the scheme the
more intrusive an adversary has to be in order to fake a
result. From less to more intrusive we list: software mod-
ification (SWM), hardware modification (HWM), and key
extraction from hardware (KXT). Human verification is es-
pecially hard to attain if tampering with the communication
channel between the user and the system under verification
is a possibility. We call a human interface secure (S-HI)
up to a class of intervention (S-HI-SWM, S-HI-HWM, S-
HI-KX) if it does not produce false results even when it is
subject to tampering of that class.

The VoteBox Nano random number display (along with
its verification scheme) is S-HI-SWM, i.e., it resists logi-
cal (bitstream) attacks, but not S-HI-HWM. In T-DRE we
provide users with two interfaces: one S-HI-SWM and one
S-HI-HWM. For the S-HI-SWM interface, we employ the
MSM (hardware-)controlled ’out SHID’ (Figure 1) as a four-
state LED which indicates VoteCA, DevelCA, ServiceCA,
and non/corrupted signed code. This is a clear improve-
ment over VoteBox nano, as we attain the same security
level with a much simpler user verification scheme.

For the S-HI-HWM interface, we employ a modified ver-
sion of TOTYV [8] that does not require the high-stability se-
cure real-time clock (HSSRTC) of Gallo et al’s solution. The
TOTYV protocol is similar to the Time-Base One-Time pass-
word (TOTP) described in [15]; TOTP derives, from time
to time, an n-digit sequence from a secret key known to the
verified device and possibly to the verifier. It is defined as
TOTP = HOTP(K,T) where T represents the number of
time steps between the initial counter time 7Ty and the cur-
rent Unix time. K is a key, and HTOP is the HMAC-based
One-Time Password Algorithm defined (RFC 4226 [14]) as
HOTP(K,C) = Trunc(HMAC — SHA — 1(K,C)). The
TOTYV proposal binds the secret derivation key K to the
device’s cryptographic identity (CID), so that any attempt
to tamper with the device, by construction, should destroy
the CID and thus cease the TOTV sequence creation. In our
architecture, we maintain two TOTV keys (Kyote, Kdevei)
protected by DSKyote and DS K gever keys.

In order to check the integrity of a specific DRE, a user
has to access a TOTV sequence produced by the electoral
authority. In other to avoid replay attacks, this access must
be either i) confidential and prior to the DRE display of the
TOTV, or ii) real-time, on-demand, and signed.

In our proposal, we use the same construction as the
TOTYV, but instead of having a single T' representing the
number of time steps since Unix epoch, we use two T vari-
ables (Tvote, Tdever). These represent the time steps accumu-
lated during every DRE usage when running in voting mode
and development mode, respectively. The time counters nec-
essary for this are made persistent and are protected by the
MSM from stalls or decrement. In order to avoid other types
of replay attacks, and after signed closeout records are pro-
duced by the DRE, it stalls the counter and includes it in the
certificate, pausing the timing increments. In the next DRE
usage (possibly on the next election), the electoral authority
sends the poll workers TOTV = HTOP(K,T), with T =
max(Teioseouts Tuser—access), which allows for DRE boot-up

196

and counter resumption. The modification from the original
TOTYV proposal is motivated by the cost of a high stability
secure real time clock. The usage of our proposals is further
illustrated in Section 5.

S. T-DRE IMPLEMENTATION & RESULTS

The practical realization of our proposals was done in two
phases, a prototyping and a mass production phase. In the
first, the theoretical, technological, and procedural solutions
were tested and validated. In the second, any necessary
modifications were implemented.

5.1 Hardware and Firmware Implementation

Prototype Due to the large number of DREs to be pro-
duced (165,000), our proposals were thoroughly tested in a
prototype prior to the delivery of final specifications to the
chosen vendor for mass production. In the prototype (com-
posed by two connected boards: B1 and B2), we instantiated
all of the T-DRE main peripherals (Figure 1, namely: MSM,
BIOS memory, encrypted voter keyboard (in SHID), out-
put device (serial display), secure output (out SHID), main
CPU, among others. The B2 board is a commercial em-
bedded PC, with an AMD Geode LX800 CPU, with 256 MB
RAM. The Bl is a custom board specifically built for the
prototype. It hosts the MSM and other devices, and con-
nects the security module to the bottom board by means of
an ISP connection (to BIOS delivery) and a USB connection
(for other, cryptographic, services).

Considerable effort was spent on the correct choice of the
micro-controller (uC) employed for the MSM as it must con-
form to many requirements: a) have internal code and data
memory (both persistent and volatile); b) the entire memory
must be lockable (no read/write access); ¢) memories must
be large enough to handle cryptographic mechanisms (RSA,
ECDH, ECDSA, SHA-2, homomorphic DH) and store keys
and certificates; and d) reasonable performance, in order to
handle quick BIOS verification and cryptographic services.

In our prototype, the MSM was implemented using a
NXP LCP2000 (ARM) family uC which meets these re-
quirements: a) up to 1IMB internal FLASH memory with
code read protection, b) up to 40KB RAM, enough for the
implementation of asymmetric algorithms; c¢) 72MHz, 32-
bit core, with 64 DMIPS performance. The voter input
device (cryptographic, tamper-resistant physical keyboard)
was simulated using a MSP430 uC, connected to the main
uC by an SPI bus. The output secure HID is composed by
three light emitting diodes (LEDs) which are directly con-
nected to the MSM. In order to provide an onboard source
of entropy, we implemented two random number generators
using avalanche-effect semiconductor noise.

For the asymmetric algorithms on the MSM and the cryp-
tographic keyboard we used the RELIC library [7]. For our
prototype, the implementation of the required MSM func-
tionalities, including DSK and ESK handling, binary code
verification, CSR, exportation, secure firmware update and
cryptographic keyboard handling required about 180Kbyte
FLASH (code) memory and 24Kbyte RAM. Employed func-
tions were: signing and verification, asymmetric encryp-
tion/decryption (RSA-2048 PKCS#1); hash (FIPS 180-3
SHA-512); block ciphers (FIPS 197 AES 256).

A prototype software stack was also implemented. The
bottom board BIOS was modified so that it uses the MSM
slave interface to check the bootloader’s authenticity. The

bootloader was also modified (from GRUB) to test the boot
image, rather than files, using the MSM.

5.1.1 Attacks and Countermeasures

T-DRE, as PC-TPM, has no effective runtime (after boot)
countermeasures against defective software nor buffer over-
flow attacks (data execution). While the first problem can
be traced (and later dealt with) due to the sole use of signed
code, the second demands more attention. In Brazil DREs
have no data links, so buffer overflow attacks from voters
or poll workers keypad is highly unlikely. For further pro-
tection, one may consider the “reboot prior to each vote”
approach.

Hardware systems are subject to many implementation
attacks, in special side-channel analysis (SCA) [12]. SCA use
information leaked through side-channels from real systems.
More information can be found in [12] and [22]. SCA-aware
cryptographic hardware usually resists, to a certain extent,
side-channel attacks. However, they typically suffer from
lack of transparency on the employed security mechanisms
(see Section 3). As we privilege transparency over off-the-
shelf solutions, our solution uses a standard uC and added
FIPS 140-2 level 3 equivalent physical protection and SCA
counter measures:

e The entire top board was immersed in tamper-resistant
and -evidencing resin;

e In order to weaken power attacks (SPA, DPA, CPA),
we adopted two countermeasures: a) we used decou-
pling elements in all external communication paths;
and b) we filtered and stabilized the power input to
prevent energy consumption variation;

e Timing attacks are weakened by using constant-time
cryptographic operations.

5.1.2 Mass Production Versions

After validation, our architecture was realized in a mass
production version, and is set to be used on the 2010 Brazil-
ian national election, with more than 165,000 DREs. This
version differs from our prototype in some implementation
decisions and functions: a) there is a single board contain-
ing all the components required in our architecture; b) the
CPU pool was implemented as a single x86 processor; c¢) the
MSM master interface was replaced by an assistive (super-
visor) interface; if the MSM perceives any BIOS change, it
resets the CPU pool (the main drawback being that BIOS
cannot be encrypted). A second mass production version
is expected to be manufactured in the fourth quarter of
2010, with more than 200,000 DREs. These will present
further side-channel countermeasures and incorporate im-
provements deemed necessary.

5.2 Usage Procedures

5.2.1 Pre-Election, Election, and Post-Election Pro-
cedures

Since valid (non-tampered) voting machines run only code
signed by the electoral authority, it is easy for a verifier to
check whether the voting application is correct and that the
voting machines have not been tampered with:

e In the pre-election phase, a human verifier must: a)
Check for any physical tamper evidences on the DRE;

197

if any are found, stop and report; b) switch on the
DRE and enter the “resume TOTV” provided by the
electoral authority (Section 4.3); if the DRE fails to
continue the boot process, stop (either it is not the
correct DRE or the device has been tampered with);
c) check for the next TOTV to be shown by the DRE;
if it is not the expected one, stop (the DRE has been
tampered with); d) perform other verification proce-
dures (e.g. audit procedures).

e On election day, human verifiers can, at any time: a)
check for software stack integrity, by simply checking
a DRE’s status S-HID (indicative LED); if the S-HID
does not present a valid status, the use of that DRE
must be prevented (either it has been tampered with
or it is not running the correct voting software stack);
b) from time-to-time, electoral judges and voters can
check for device integrity by comparing the TOTV pro-
duced by the DRE with those from the electoral au-
thority; if any comparison fails, stop that DRE’s use
(it has been tampered with).

e In the post-election phase, a human verifier must
check whether the final TOTV present in the closeout
record is valid; if not, the device has been tampered
with and the produced closeout record is deemed in-
valid.

5.2.2 Other Procedures: Development, Testing, and
Maintenance

We chose a PKI model for key management, so that its
established practices and procedures can be used. The use
of the root CA’s and the VoteCA’ authorization keys is
only granted to the highest rank staff of the EA (in Brazil,
Supreme Court judges preside the Supreme Electoral Court),
audited (cryptographically) by political parties, Congress
and society representatives.

6. CONCLUSION AND FUTURE WORK

In this paper we propose T-DRE, a trusted computing
base for direct recording electronic voting machines, which
is mostly independent of the voting application and largely
VVSG-compliant. T-DRE’s novel combination of technolo-
gies enable device verifiability by humans, deep PKI integra-
tion and simple auditing. Our architecture was prototyped
and then reengineered for large scale manufacturing, with
165,000 devices produced. These DREs will be used in the
Brazilian 2010 presidential election.

T-DRE’s main component, the Master Security Module
(MSM), unifies the TPM and SM modules proposed in the
VVSG and adds key new features by: a) enforcing, over
the entire software stack, a policy of multi-level, certificate-
based access to peripherals and key material; and b) taking
control of human interface devices, thus amplifying vote pri-
vacy and user DRE tamper detection.

We also indicate how the new audit and control mecha-
nisms present in our architecture can be integrated into the
usual electoral cycle, the voting itself, election simulation,
device testing and servicing, and software development.

Currently, we are working on the design of a fully-auditable
secure processor to be used as a CPU-MSM for DREs.

7. REFERENCES

1]

[17]

[18]

[19]

R. Anderson, M. Bond, J. Clulow, and

S. Skorobogatov. Cryptographic processors—a survey.
Proceedings of the IEEE, 94(2):357-369, 2006.
Brazilian Superior Electoral Court (TSE). Election
statistics, April 2010.

D. Chaum. Secret-ballot receipts: True voter-verifiable
elections. IEEE Security & Privacy, 2(1):38-47, 2004.
B. Chen and R. Morris. Certifying program execution
with secure processors. In HOTOS’03: Proceedings of
the 9th conference on Hot Topics in Operating
Systems, pages 23-23, Berkeley, CA, USA, 2003.
USENIX Association.

M. Clarkson, S. Chong, and A. Myers. Civitas: A
secure voting system. 2007.

V. Costan, L. F. Sarmenta, M. van Dijk, and

S. Devadas. The Trusted Execution Module:
Commodity General-Purpose Trusted Computing. In
CARDIS ’08: Proceedings of the 8th IFIP WG
8.8/11.2 International Conference on Smart Card
Research and Advanced Applications, pages 133—148,
Berlin, Heidelberg, 2008. Springer-Verlag.

C. G. Diego Aranha. Relic is an efficient library for
cryptography. http://code.google.com/p/relic-toolkit/,
April 2010.

R. Gallo, H. Kawakami, and R. Dahab. On device
identity establishment and verification. In Proc of
EuroPKI’09 Sixth European Workshop on Public Key
Services, Applications and Infrastructures, September
20009.

R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali,
and T. Rabin. Algorithmic Tamper-Proof (ATP)
Security: Theoretical Foundations for Security against
Hardware Tampering, 2004.

A. Huang. Keeping Secrets in Hardware: The
Microsoft XBox TM Case Study. Cryptographic
Hardware and Embedded Systems-CHES 2002, pages
355-430, 2002.

International Organization for Standardization (ISO).
ISO/IEC 11889:2009 Information technology —
Trusted Platform Module. ISO/IEC, 2009.

M. Joye. Basics of Side-Channel Analysis, pages
365—380. Cryptographic Engineering. Springer, 1
edition, 2009.

Maxim Integrated Products Inc. Usip-pro component
datasheet, April 2010.

D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache,
and O. Ranen. RFC 4226: HOTP: An HMAC-based
one-time password algorithm, December 2005.

D. M’Raihi, S. Machani, M. Pei, and J. Rydell. RFC
draft: TOTP: Time-based one-time password
algorithm, January 2009.

C. Neff. A verifiable secret shuffle and its application
to e-voting. In Proceedings of the 8th ACM conference
on Computer and Communications Security, page 125.
ACM, 2001.

C. A. Neff. Practical high certainty intent verification
for encrypted votes, October 2004.

NIST. Security requirements for cryptographic
modules, Federal Information Processing Standards
Publication (FIPS PUB) 140-2, 2002.

E. Oksuzoglu and D. Wallach. VoteBox Nano: A

198

20]

(21]

(22]

23]

24]

(25]

[26]

27]

(28]

Smaller, Stronger FPGA-based Voting Machine (Short
Paper). useniz.org, 2009.

E. Rescorla. Understanding the security properties of
ballot-based verification techniques. In Electronic
Voting Technology Workshop / Workshop on
Trustworthy Elections, August 2009.

R. L. Rivest and J. P. Wack. On the notion of
“software independence” in voting systems. System,
2006.

P. Rohatgi. Improved Techiniques for Side-Channel
Analysis, pages 381-406. Cryptographic Engineering.
Springer, 1 edition, 2009.

D. R. Sandler. VoteBozx: A tamper-evident, verifiable
voting machine. PhD thesis, Rice University, April
2009.

N. K. Sastry. Verifying security properties in electronic
voting machines. PhD thesis, University Of California,
Berkeley, 2007.

K. Shimizu, H. P. Hofstee, and J. S. Liberty. Cell
broadband engine processor vault security
architecture. IBM J. Res. Dev., 51(5):521-528, 2007.
G. E. Suh, C. W. O’Donnell, and S. Devadas. Aegis:
A single-chip secure processor. IEEE Design and Test
of Computers, 24(6):570-580, 2007.

The Common Criteria Recognition Agreement.
Common criteria for information technology security
evaluation v3.1 revision 3, July 2009.

USA Election Assistance Commission.
Recommendations to the EAC voluntary voting
system, guidelines recommendations, 2007.

