
SPARC16: A new compression approach for the SPARC architecture

Leonardo Ecco, Bruno Lopes, Eduardo C. Xavier, Ricardo Pannain,
Paulo Centoducatte, Rodolfo Azevedo

Institute of Computing
University of Campinas - UNICAMP

Av. Albert Einstein, 1251, Campinas, Brazil
leonardo.ecco@students.ic.unicamp.br, {bruno.lopes,ecx,pannain,ducatte,rodolfo}@ic.unicamp.br

Abstract

RISC processors can be used to face the ever increasing
demand for performance required by embedded systems.
Nevertheless, this solution comes with the cost of poor code
density. Alternative encodings for instruction sets, such as
MIPS16 and Thumb, represent an effective approach to deal
with this drawback. This article proposes to apply a new
encoding to the SPARCv8 architecture. Through extensive
analysis of a program mix from the Mibench and Media-
bench benchmark suites, we suggest a new 16-bit instruc-
tion set, easily translated to its 32-bit counterpart during
execution time. Using the aforementioned program mix to
infer how code could be represented in the proposed 16-bit
ISA, compression ratios as low as 56% can be obtained. We
also evaluated the cache behavior and showed reductions
of 42% on cache misses that can increase performance up
to 28% (for patricia program with 2KB cache).

1 Introduction

Recent works in the Code Compression area have proved
that code size reduction is not only a matter of reducing
the program footprint on memory but also a very effective
way to improve the program performance while reducing
the total power on a system [4, 8, 18]. Going further, it is
not only necessary to have good algorithms to encode the
program instructions but also a very good decompression
system to allow all these gains together.

The Code Compression problem can be stated as the
search for an alternative representation to the program in-
structions that reduces the memory usage and can be done
both in software and hardware [3], usually with different
goals. While the software approach focuses on the max-
imum reduction on the program size, at the possible cost
of program performance since the decompression will be

done in software, the hardware approach focuses on decom-
pression speed, usually at the cost of code size reduction.
There are, basically, two different approaches for hardware
decompression, one that compresses instructions or blocks
of the program in an ad-hoc manner, and another that tries
to create an alternative encoding for the instructions in a
smaller size, like representing the 32-bit instructions in a
well-defined 16-bit format. This paper focuses on the latter
approach to find a new encoding to the SPARC ISA.

The SPARC ISA was selected after an analysis of 15
variations of 7 different ISAs and represent a good trade-
off between opportunity to compress (big code size) and
impact of the result (the SPARC ISA still has a good user
base nowadays).

In this work, we will use the term Compression Ratio
to represent the code size reduction. Equation 1 shows how
the Compression Ratio should be calculated. It is important
to notice that, in this case, lower means better. A Com-
pression Ratio of 56% means that the program is reduced to
56%. In this number, all the overhead should be included.
Unfortunately, not all related work in the area consider the
overhead in this number.

Compression Ratio =
Compressed Size + Overhead

Original Size
(1)

We used the MediaBench and MiBench benchmarks
to analyze the instruction occurrences and design the
SPARC16 encoding. The results were evaluated using the
same programs from MediaBench (average 58.1%, better
56.4%), MiBench (average 57.6%, better 56.4%), and with
the Linux Kernel (64.4%) and binaries (64.2%). We also
evaluated the instruction cache behavior of these programs
and found that it is possible to reduce the miss rate in 42%
which can improve the performance (28% on the instruc-
tion cache in the patricia program) and reduce the power
consumption.

This paper is organized as follows: Section 2 describes

the previous works on this area. Section 3 shows an eval-
uation of current ISAs focusing on opportunities for code
compression and justifies the selected ISA. Section 4 shows
an Integer Linear Programming (ILP) model used to create a
16-bit encoding for the SPARCv8 ISA followed by Section
5 that describes the resulting encoding. Section 6 shows the
results of our architectural evaluation and Section 7 draws
some conclusions.

2 Related Work

Although Code Compression is not a new research
area [24], some of the goals of recent projects are. In the
beginning, researchers focused only on code size reduction
because memory cost and size were the main system re-
striction. Recent works on the field showed that, if well de-
signed, the decompression hardware can hide memory hier-
archy latencies and improve the system performance while
reducing power consumption [9, 10, 16].

The DLX architecture, created by Hennessy and Patter-
son [19], was the first 32 bits architecture to have a 16 bit
extension. The extension, called D16, had instructions with
2 registers as operands (the original had 3) and also smaller
immediate field. This configuration allowed a 62% com-
pression ratio and 5% performance loss [7].

First presented by ARM on its ARM7 model, the next
16 bits processor extension in the market was Thumb [1].
Thumb enabled ARM processors are capable of running
code in both 32 and 16 bits modes and allow subroutines
of both types to share the same address space, while the
mode exchange is achieved during runtime through BX and
BLX instructions, which are branch and call instructions
that flip the current mode bit in a special processor regis-
ter. To fit functionality in 16 bits, a group of only 8 regis-
ters together with a stack pointer and link registers are visi-
ble, the remaining registers can only be accessed implicitly
or through special instructions. Results presented by ARM
show a compression ratio ranging from 55% to 70%, with
an overall performance gain of 30% for 16 bit buses and
10% loss for 32 bit ones. Thumb2 is the recent version of
the original Thumb incremented with new features like the
addition of specific instructions for operating system usage.

The MIPS16 [15] instruction set is the MIPS processor
16-bit extension, it contains the same capability of exchang-
ing between modes (using the JALX instruction) and shar-
ing address space. There is a reduction from 16 to 5 bits on
the immediate size, and only 8 registers, out of 32 on the tra-
ditional MIPS, are visible. Special move instructions can be
used to move data between the visible and hidden registers,
while some other instructions can also use hidden registers
implicitly. New features introduced by MIPS16 include the
EXTEND instruction, which has only an opcode and an im-
mediate field that is used to extend the immediate of the

following instruction. MIPS16 also has PC and SP relative
addressing that can be used to efficiently load constants and
load/store instructions whose computed effective addresses
are shifted to match type alignment. This reduced encod-
ing achieved a 60% compression ratio according to MIPS
technologies [15].

[2, 9, 14, 16, 22] focus their work in Code Compression
using dictionaries. The use of a dictionary to compress
code tends to reduce energy consumption and to improve
the performance with a reasonable static compression ra-
tio. Using bitmask and prefix based Huffman encoding, [14]
have improved their compression ratio in 9–20%. [16] have
used the variable-length ISA RISC processor CR16C (Na-
tional Semiconductor Inc.) with two approaches: using a
bit-vector and using a reserved instruction to identify code
words. An additional logic to decompress the code on-the-
fly was designed for each of these approaches. The goal of
this work is to use the code compression to improve per-
formance. The results have demonstrated an speed-up of
up to 15%, achieving also a reduction in code size (up to
30%) and bus-switching activity (up to 20%). The reduc-
tion of the bus-switching activity also reduced the energy
consumption.

[5, 6, 10, 20] have used a hardware support approach
to optimize the code compression/decompression. [5, 6]
achieved compressions ratios as low as 56%. In both works
they have used a set of applications applied to ARM and
MIPS architectures, they also used PowerPC in the first
work. [20] implemented a fast parallel decompression and
improved the decode bandwidth up to four times, with mi-
nor impact (less than 1%) on compression efficiency. The
experimental results of [10] showed reductions in code size
(up to 35%) and energy consumption (up to 10%) and im-
provements in performance (up to 20%).

3 Instruction Set Evaluations

In order to select the base architecture for our experi-
ments, we evaluated 15 variations of 7 different ISAs re-
garding to code size for the same set of programs, the SPEC
2006 benchmark. To evaluate them, we used gcc built
specifically for each architecture variation and the same
global gcc options to allow a fair comparison. By global
options we mean all the options that are not architecture
specific. From the architecture specific options, we used
the ones that generate the smaller code size.

Figure 1 shows the total program size for each archi-
tecture variation supported by gcc sorted in ascending or-
der. We represented the program sizes in three different
ways and normalized the results in regard to the smaller one
value for each category. In the graph, AM means Arithmetic
Mean of all programs for each architecture, GM means Ge-
ometric Mean, and TT means Total Size. Both AM and TT

1 1.2 1.4 1.6 1.8

Normalized results

arm(thumb)

m68k

m68k(cfv4e)

i686

i686(core2)

x86_64(core2)

x86_64

arm

sparcv8

sparc

powerpc

mips32

mips

alpha(ev67)

alpha

A
rc

h
it

e
ct

u
re

s

AM GM TT

Integer applications

SPEC2006

Figure 1. SPEC 2006 program sizes compiled
with the same gcc global options

were normalized to ARM (Thumb) and GM was normal-
ized to M68K.

The best candidate for our compression experiment is an
architecture that is still being used nowadays and that has a
low code density (large code size). Going from the archi-
tecture with lower to the higher density, we have:

1. Alpha: Both EV6 and EV7 were evaluated and have
the lowest code density. Based on that, they would be
the best choice but this architecture has been discon-
tinued.

2. MIPS: Both MIPS and MIPS32 are the next architec-
ture with the lower code density. But the MIPS ar-
chitecture has already a compact ISA called MIPS16.
Unfortunately, the gcc provided with this architecture
is not capable of compiling the SPEC2006 benchmark
(issues in the standard C library newlib which is fo-
cused on embedded systems). From the MIPS16 doc-
umentation [15], the compression ratio goes around
60% which places MIPS16 in the group of higher code
density.

3. PowerPC: The PowerPC architecture also has an ex-
tension to compression, codenamed CodePack [12], so
it goes to the same set as MIPS16 and Thumb.

4. SPARC: The SPARC and SPARCv8 [23] architec-
ture are the next in the lower code density rank, with
code near than 40% bigger than the higher density ar-
chitectures. The SPARC instruction set is the IEEE
1754 standard, which made a market with several dif-
ferent makers around the world (more than 50 reg-
istered members in SPARC International nowadays).
The SPARC architecture does not have a compression
mechanism and it has been used for a long time in sev-
eral academic works as a testbed for compression al-
gorithms.

5. ARM: The ARM architecture has the Thumb and
Thumb2 extensions which makes it the higher code
density ISA we evaluated.

6. i686 and x86 64: Intel architecture 32-bit and 64-bit
versions. Although it is not the focus of this paper, no-
tice that the code size keeps growing with the architec-
ture evolution. This is because newer instructions (ISA
extensions) need more bits to be represented in the old
ISA. There is, on average, a 15% increase in the code
size for the same program from i686 to x86 64. It is
important to mention that we are not comparing per-
formance or any other features here, it is only a code
size analysis for now.

7. m68k: The Motorola 68000 family is a highly encoded
instruction set, the smallest considering the GM val-
ues.

Based on the the previous comments, we selected the
SPARCv8 architecture since it represents a very good com-
promise between potential gain in code size reduction and
current ISA usage. To reduce the SPARCv8 ISA to 16-bits,
we need to analyze how the ISA fields are used. The most
important fields to reduce are the immediates since they can
occupy more than half instruction when used.

Figure 2 shows the accumulated number of bits needed
to encode the immediate in all arithmetic, logic, shift, load
and store instructions for the MiBench Benchmark. Notice
that more than 80% of the arithmetic instructions require 6
or less bits. Also, near 80% of the load and store instruc-
tions can be represented with 9 or less immediate bits. We
got similar results from the MediaBench Benchmark.

Based on the analysis of the ISA, we developed an Inte-
ger Linear Programming model (ILP) to represent the prob-
lem and solved it to find the best field sizes for every in-
struction, defining a new set of formats. The model will be
described in the next section.

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of bits

0

20

40

60

80

100

A
cc

u
m

u
la

te
d

 p
e
rc

e
n

ta
g

e
 (

%
)

Number of bits needed to encode immediate

LOAD STORE ARITH LOGIC SHIFT

Mibench

Figure 2. Immediate sizes for load, store,
arithmetic, logical and shift instructions

4 An Integer Linear Programming Model to
Solve the Problem

An input instance to the ILP model mentioned in section
3 consists of a tuple (S, F, I, c). Each element s ∈ S is a
set of fields. A field can be a primary opcode, a secondary
opcode, a register or an immediate. The primary opcode is
mandatory for every s ∈ S. Secondary opcodes and imme-
diates are optional, but limited to one per s ∈ S. Registers
are also optional, but each s ∈ S can have up to three.

An attribution of size to each of the fields of an element
s ∈ S corresponds to a format. Formats obey two rules:
the sum of sizes of each of its fields equals sixteen and the
size of a register field is always three. For each s ∈ S,
we generated every possible format obeying the aforemen-
tioned rules and placed them into the set F .

The set I contains SPARC16 candidate instructions.
We took as candidates SPARCv8 instructions and pseudo-
instructions. Pseudo-instructions were included because we
wanted to hide the existence of certain registers, such as
%g0, %sp, %fp and %ra, thus enabling us to not only miti-
gate the impact of having only three bits to index the register
bank, but also to increase the size of immediate fields, since
the pseudo-instructions reference registers implicitly.

The cost function c : I × F → I specifies the cost of
mapping i ∈ I to format f ∈ F . Certain mappings are
invalid, for instance, associating an instruction that needs
an immediate to a format that does not have an immedi-
ate field. The c function disregards those. The costs were
calculated using the programs from Mediabench [17] and
Mibench [13]. For every instruction in those programs, we

identified an equivalent in I , and attributed the cost of as-
sociating it to every valid format taking into account factors
such as the immediate field size being big enough to ac-
commodate constants and attempts to represent 3-addresses
instructions as 2-addresses instructions (i.e., forcing a reg-
ister to work simultaneously as source and destination of an
operation).

In order to allow the resolution of the ILP model to dis-
card candidate instructions, the special format 0 was cre-
ated. The cost of associating i ∈ I to 0 represents the cost
of not supporting i in SPARC16. We calculated that by esti-
mating the number of supported SPARC16 instructions that
would have to be executed to achieve the same effect as i.
Obviously, this is an speculative value, since the SPARC16
ISA is yet to be determined.

That being said, the problem is to map every instruc-
tion to a single format minimizing the total cost incurred in
this mapping. The mapping is subject to several constraints
that guarantee that the obtained mapping makes sense —
meaning that the primary opcode has the same number of
bits in every chosen format, and that the number of bits at-
tributed to the opcode fields affects the number of instruc-
tions that can be placed in a format. Below we describe the
ILP model.

We have binary variables xif that indicate if instruction
i is going to be mapped to format f or not. We also have
binary variables yf that specify if the format f is going to
be used. A format can have at most two opcode fields (a
primary and a secondary). There are at most K opcode
fields identified by OP1, OP2, . . . , OPK . The primary op-
code (OP1) is shared amongst every s ∈ S, while the sec-
ondary opcodes (OP2, . . . , OPK) are exclusive. Each op-
code has at most L bits. There are binary variables opkl

indicating that the k-th opcode uses l bits. There is a spe-
cial integer variable T that specifies the number of pri-
mary opcode available slots. For each k ∈ {2, . . . ,K} and
l ∈ {1, . . . , L} we create integer variables Gkl that state
the number of primary opcode slots, among the total T , that
will be occupied by instructions mapped to a format that has
the k-th opcode with l bits as its secondary opcode. Notice
that we can map at most 2lGkl instructions to the format
in question. The integer variable G1 states the number of
primary opcode slots occupied by instructions mapped to a
format that has no secondary opcode. We use f ∈ s to de-
note that a format f ∈ F was generated from a set s ∈ S.
We use i ∈ f to denote that instruction i ∈ I can be mapped
to format f ∈ F and we call the set of formats to which i
can be mapped Fi.

Min
X
i∈I

X
f∈Fi

c(i, f)xif

Subject toP
f∈s yf ≤ 1, for s ∈ S (1)

xif − yf ≤ 0, for i ∈ I and f ∈ Fi (2)P
f∈Fi

xif = 1, for i ∈ I (3)

yf + yf′ ≤ 1, for f, f ′ ∈ F inconsistent (4)P
l≤L opkl = 1, for k ≤ K (5)

yf − opkl ≤ 0, for each k and l, f has opkl (6)

T −
P

l≤L 2lop1l ≤ 0 (7)

G1 +
PK

k=2
P

l≤L Gkl − T ≤ 0 (8)

Gkl − 2Lopkl ≤ 0, for each k and l (9)P
(i,f)∈G1 xif −G1 ≤ 0 (10)P
(i,f)∈Gkl

xif − 2lGkl ≤ 0, for each k and l (11)

Constraint (1) assures that at most one format f ∈ F of
each set s ∈ S is chosen. Constraint (2) establishes that
an instruction is assigned to a format only if the format is
chosen. Constraint (3) guarantees that each instruction is
assigned to a format (remember that every instruction can
be mapped to format 0). Constraint (4) assures that incon-
sistent formats, i.e. formats that attributed different sizes to
a field in common, cannot be used at the same time. For ex-
ample, this guarantees that all the chosen formats will have
the same number of bits dedicated to the primary opcode
(since OP1 is shared amongst all formats). Constraint (5)
establishes that each opcode field will have a fixed size of
l of bits. Constraint (6) says that one format with the k-th
opcode using l bits, can be used only if the solution uses
that opcode with l bits. Constraint (7) calculates the total
amount T of slots for the primary opcode. Constraint (8)
guarantees that the number of slots of the primary opcode
that are spread among the groups is at most T . Constraint
(9) assures that group Gkl is going to be used only if in
the solution, opcode k uses l bits. Constraints (10) and
(11) limit the number of instructions that can be assigned
to each format. For these constraints, (i, f) ∈ G1 refers
to instructions i ∈ I mapped to a format f ∈ F with no
secondary opcode, while (i, f) ∈ Gkl refers to instructions
i ∈ I mapped to a format that has k with l bits as its sec-
ondary opcode.

5 The SPARC16 ISA

SPARC16 is an extension to the SPARCv8 instruction
set and it relies on a regular SPARCv8 pipeline in order to
work. The SPARC16 instructions are simple enough to be
translated to their 32-bit counterparts during execution time.
The translation, per se, is accomplished by placing a decom-
pressor between the instruction cache and the SPARCv8
pipeline, as shown in figure 3. This is similar to the scheme
adopted by Thumb [1] and MIPS16 [15].

Table 1 illustrates the formats in which SPARC16 in-
structions are encoded. Every format is identified by a 5-bit
major opcode. Some formats also hold a secondary opcode.
Formats come in different shapes and sizes in order to fulfill
specific instruction needs. For instance, I format is used to

Instruction

 Cache

 SPARC16

Decompression

 Block

Standard

SPARCv8

 pipeline

 16-bit

instruct ion

 32-bit

instruct ion

 Memory

interface

Figure 3. SPARC16 decompression diagram

accommodate a call and link instruction, which requires a
large immediate field, but no registers.

On the other hand, RRR format has no immediate field
and is used to encode instructions that operate on three reg-
isters, such as an add, which sums the values held by two
source registers and stores the result in a third register. The
RR format is also available and is used to encode SPARC16
instructions that operate on two registers only, forcing one
of the registers to act as source and destination of the op-
eration. Although this may look like a disadvantage, we
can use the bits, otherwise used to encode the third register,
in a more convenient way, such as encoding a larger set of
instructions through the use of a secondary opcode.

SPARC16 uses a subset of the SPARCv8 registers. From
the 32 SPARCv8 registers, 8 are visible and can be explic-
itly referenced by SPARC16. To access hidden registers,
two special instructions are provided — MOV8to32 and
MOV32to8. The former moves data from a visible register
to a hidden register, the latter performs the opposite opera-
tion. The I2 format is used to represent these instructions by
breaking the eight bit immediate into a three bit field, used
to index a SPARC16 visible register, and a five bit field,
used to index one of the 32 registers from the SPARCv8
register bank. These instructions could be used to spill data
into the hidden registers avoiding the emission of memory
operations during register allocation.

Beyond being able to explicitly index registers, some in-
structions in SPARC16 include implicit access to registers
%sp, %fp, %g0 and %ra. This presents two main advan-
tages. Firstly, it allows us to mitigate the impact of having a
smaller set of visible registers – only 8, since we use 3 bits
to index the register bank in SPARC16. If the aforemen-
tioned registers were visible, we would only have 4 regis-
ters left to work with. Secondly, implicitly referencing a
register means 3 free bits that can be used to encode a larger
immediate. As an example, we can list ldfp, which is a
load instruction, encoded in the RI format, where the frame
pointer is used implicitly as a source register.

Large constants are handled using an auxiliary instruc-
tion similar to the MIPS16 EXTEND one. Any instruction

Table 1. SPARC16 formats
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I-type op immediate
I2-type op op2 immediate
RI-type op immediate reg
RI2-type op op2 immediate reg
RRI-type op immediate reg reg
RRI2-type op op2 imm reg reg
RR-type op op2 reg reg
RRR-type op op2 reg reg reg

Table 2. Mediabench compression rates
Program Comp. rate Program Comp. rate
cjpeg 56.8% rawcaudio 56.6%
djpeg 57.8% rawdaudio 56.6%
mpeg2dec 59.9% timing 56.4%
mpeg2enc 59.9% toast 58.9%
pegwit 58.7% untoast 58.9%

with the need of larger constants can be extended using
some bits from the extend instruction. This mechanism is
also applied for providing additional registers to some in-
structions, allowing some operations from the SPARCv8
not represented in SPARC16 to take place with only a 16
bit overhead, instead of a mode exchange. Neither MIPS16
nor Thumb used the extend instruction to encode the third
register for an instruction.

Alternating between execution modes can be accom-
plished by the jmpl instruction, available in SPARCv8 and
SPARC16. The least significant bit in the 32-bit target
address determines the target routine’s mode — 0 means
SPARCv8 and 1 means SPARC16.

Although the instruction allocation came from an ILP
model, SPARC16 was designed to leave some encoding
space for future ISA extensions – as a matter of fact,
the MOV8to32, MOV32to8 and EXTEND instructions were
added after we obtained the formats using the ILP algo-
rithm described in section 4. The bit encoding for each new
instruction will be made trying to simplify the conversion
between SPARC16 and SPARCv8. The encoding is not ex-
pected to reduce the processor clock by two reasons: (1)
The critical path in the SPARCv8 processor, that we are go-
ing to use, is not in the Instruction Decode stage, and (2)
The bigger decode lookup table to be used will have 32 lines
(5-bit address).

6 Experimental Results

In order to estimate the compression rate achieved by
the proposed ISA, we used the SPARCv8 code as a start-

Table 3. Mibench compression rates
Program Comp. rate Program Comp. rate
bmath large 58.3% qsort small 56.7%
bmath small 58.3% rawcaudio 56.6%
bitcnts 56.8% rawdaudio 56.6%
cjpeg 56.8% rijndael 58.7%
crc 32 56.7% search large 56.7%
dijkstra large 57.0% search small 56.7%
dijkstra small 57.0% sha 56.7%
djpeg 57.8% susan 57.0%
fft 57.2% timing 56.4%
lame 63.9% toast 58.9%
patricia 57.2% untoast 58.9%
qsort large 57.1%

Table 4. Linux compression rates
Program Comp. rate
Kernel 64.4%
/bin programs 64.2%

ing point. Our approach consisted in checking each instruc-
tion of a SPARCv8 program and mapping them to the corre-
sponding SPARC16 instruction. For instance, an SPARCv8
add %reg,imm,%reg instruction can be represented by its
16-bit counterpart, which is encoded in the RRI format.
The difference between the two instructions is that the for-
mer has 13 bits to encode the immediate while the latter
has only 5. Therefore, when we analyze an SPARCv8 add
%reg,imm,%reg instruction, we first check if the immediate
can be accommodated in a 5-bit field. If so, we account one
SPARC16 instruction (2 bytes). If not, we know we have
to use the EXTEND mechanism, mentioned in Section 5,
which implies we will need 4 bytes (2 bytes from the EX-
TEND plus the 2 bytes of the add %reg,imm,%reg instruc-
tion). We have used a similar approach when converting
instructions from 3 registers to 2 registers. In both cases,
we did not consider the costs involved in the possible spill
code that can be generated by having only 8 visible regis-
ters. We expect that this cost will not make a big impact our
results because the compiler can try to avoid it and it is still
possible to access the other registers using the MOV8to32
and MOV32to8 instructions.

Using the aforementioned method, we estimated the
compression ratio for MediaBench, MiBench and Linux.
Results are presented in Tables 2, 3 and 4, respectively.
Since the MediaBench and MiBench files were used to cre-
ate the model, we also used other set of files to check the
compression ratio: the Linux kernel and its /bin programs.

On average, the compression ratio for the MediaBench
programs (table 2) is 58.1%, the MiBench (table 3 is 57.6%,

(a) qsort (b) rijndael

(c) dijkstra (d) patricia

Figure 4. SPARC16 vs SPARCv8 miss rate evaluation

Figure 5. Absolute number of cache misses
for the patricia program

and the Linux kernel and binaries average is 64.3%. The
difference in the Linux programs comes from the usage of
privileged instructions and immediates that are bigger on
average. Even with this numbers, we still have a good code
size reduction.

We also estimated the impact that SPARC16 should
have on reducing cache misses. We collected an execu-
tion trace from the SPARCv8 ArchC [21] model for four
different MiBench programs: qsort, rijndael, dijkstra and
patricia. Using the previously explained approach to map
the SPARCv8 code to SPARC16 instructions, we obtained
SPARC16 traces from the SPARCv8 ones.

We analyzed the traces using Dinero IV [11]. We tested
different sizes for a 2-way, 16 bytes per line cache. Results
are presented in Figures 4(a), 4(b), 4(c) and 4(d).

It is not fair to compare miss rates, since the instruction

count is higher for SPARC16 than SPARCv8. For instance,
for the patricia program, SPARCv8 performed 278,059,318
instruction fetches while SPARC16 performed 337,833,652
– approx. 21.4% more. Nevertheless, due to a smaller in-
struction size, SPARC16 achieves a smaller absolute num-
ber of cache misses for every tested cache size, as shown
by figure 5. Similar patterns were observed for the other
programs.

Now let’s have a closer look at how performance can be
affected by a reduction in miss rates. Consider a 2-way, 16
bytes per line, 2KB cache. With this cache configuration
and running the patricia program, the absolute number of
cache misses for SPARCv8 and SPARC16 are 19,664,314
and 11,338,999, respectively. Table 5 shows how the cache
miss penalty affects the number of cycles spent on instruc-
tion fetching. For example, considering a memory latency
of 10 cycles, the SPARC16 uses 3% (= 1− 0.97) less time
in instruction fetch than SPARCv8. This value is increased
to 28% for a memory latency of 50 cycles.

Table 5. Cycles spent on instruction fetches
Miss penalty (cycles) 10 20 30 40 50
SPARC16/SPARCv8 0.97 0.85 0.79 0.75 0.72

7 Conclusions

We have presented the SPARC16 instruction set exten-
sion for the SPARCv8 processor. We first evaluated 7 ISAs
to find a good candidate for code compression. Then we

analyzed all the instructions and formats usage. To find the
best possible encoding, we used an Integer Linear Program-
ming method and selected the best formats to minimize the
code size.

In order to not have a biased model, we designed it based
on the MiBench and MediaBench benchmarks and evalu-
ated it with MiBench, MediaBench, Linux kernel and some
Linux programs (/bin files). As result, we got an aver-
age compression ratio of 58.1% for MediaBench programs,
57.6% for MiBench and 64.3% for the Linux programs. Be-
sides that, we also analyzed the instruction-cache behavior
after using our encoding. As expected, a SPARC16 program
needs more instructions to execute than the SPARCv8 coun-
terpart, but SPARC16 instructions are smaller, and when us-
ing the same cache configuration it takes less time to fetch
all the program instructions to SPARC16 than SPARCv8.
For the patricia program, fetching all instructions to the pro-
cessor is up to 28% faster in SPARC16 as the result of 42%
less cache misses for a 2KB cache. As shown in previous
work, this will certainly reflect in the energy consumption.

8 Acknowledgments

Our thanks to FAPESP, CAPES and CNPq for support-
ing this work.

References

[1] ARM. An Introduction to Thumb. Advanced RISC Ma-
chines Ltd., Mar. 1995.

[2] N. Aslam, M. Milward, I. Nousias, T. Arslan, and A. Erdo-
gan. Code compression and decompression for instruction
cell based reconfigurable systems. pages 1–7, March 2007.

[3] A. Beszédes, R. Ferenc, T. Gyimóthy, A. Dolenc, and
K. Karsisto. Survey of code-size reduction methods. ACM
Comput. Surv., 35(3):223–267, 2003.

[4] E. Billo, R. Azevedo, G. Araujo, P. Centoducatte, and E. W.
Netto. Design of a decompressor engine on a sparc proces-
sor. In SBCCI ’05: Proceedings of the 18th annual sympo-
sium on Integrated circuits and system design, pages 110–
114, New York, NY, USA, 2005. ACM.

[5] T. Bonny and J. Henkel. Efficient code density through look-
up table compression. Design, Automation and Test in Eu-
rope Conference and Exhibition, 0:151, 2007.

[6] T. Bonny and J. Henkel. Instruction re-encoding facilitat-
ing dense embedded code. Design, Automation and Test in
Europe Conference and Exhibition, 0:770–775, 2008.

[7] J. Bunda, D. Fussell, W. C. Athas, and R. Jenevein. 16-bit vs.
32-bit instructions for pipelined microprocessors. SIGARCH
Comput. Archit. News, 21(2):237–246, 1993.

[8] X. Chen, L. Yang, H. Lekatsas, R. P. Dick, and L. Shang.
Design and implementation of a high-performance micro-
processor cache compression algorithm. Data Compression
Conference, 0:43–52, 2008.

[9] M. Collin and M. Brorsson. Two-level dictionary code com-
pression: A new scheme to improve instruction code density
of embedded applications. Code Generation and Optimiza-
tion, IEEE/ACM International Symposium on, 0:231–242,
2009.

[10] M. L. Corliss, E. C. Lewis, and A. Roth. The implementation
and evaluation of dynamic code decompression using dise.
ACM Trans. Embed. Comput. Syst., 4(1):38–72, 2005.

[11] J. Edler and M. Hill. Dinero iv trace-
driven uniprocessor cache simulator, online at
http://www.cs.wisc.edu/ markhill/dineroiv/, 2003.

[12] M. Game and A. Booker. CodePack: Code Compression
for PowerPC Processors. International Business Machines
(IBM) Corporation, 1998.

[13] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown. Mibench: A free, commercially represen-
tative embedded benchmark suite. Workload Characteriza-
tion, 2001. WWC-4. 2001 IEEE International Workshop on,
pages 3–14, Dec. 2001.

[14] S. I. Haider and L. Nazhandali. A hybrid code compres-
sion technique using bitmask and prefix encoding with en-
hanced dictionary selection. In CASES ’07: Proceedings
of the 2007 international conference on Compilers, archi-
tecture, and synthesis for embedded systems, pages 58–62,
New York, NY, USA, 2007. ACM.

[15] K. Kissell. MIPS16: High-density MIPS for the Embedded
Market. Silicon Graphics MIPS Group, 1997.

[16] R. Kumar and D. Das. Code compression for performance
enhancement of variable-length embedded processors. ACM
Trans. Embed. Comput. Syst., 7(3):1–36, 2008.

[17] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
abench: a tool for evaluating and synthesizing multimedia
and communicatons systems. In MICRO 30: Proceedings
of the 30th annual ACM/IEEE international symposium on
Microarchitecture, pages 330–335, Washington, DC, USA,
1997. IEEE Computer Society.

[18] E. W. Netto, R. Azevedo, P. Centoducatte, and G. Araujo.
Multi-profile based code compression. In DAC ’04: Pro-
ceedings of the 41st annual conference on Design automa-
tion, pages 244–249, New York, NY, USA, 2004. ACM.

[19] D. A. Patterson and J. L. Hennessy. Computer architecture:
a quantitative approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1990.

[20] X. Qin and P. Mishra. Efficient placement of compressed
code for parallel decompression. VLSI Design, International
Conference on, 0:335–340, 2009.

[21] S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo.
Archc: a systemc-based architecture description language.
pages 66–73, Oct. 2004.

[22] S.-W. Seong and null Prabhat Mishra. An efficient code
compression technique using application-aware bitmask and
dictionary selection methods. Design, Automation and Test
in Europe Conference and Exhibition, 0:112, 2007.

[23] C. SPARC International, Inc. The SPARC architecture man-
ual: version 8. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1992.

[24] W. T. Wilner. Burroughs b1700 memory utilization. In
AFIPS ’72 (Fall, part I): Proceedings of the December 5-7,
1972, fall joint computer conference, part I, pages 579–586,
New York, NY, USA, 1972. ACM.

