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Abstract—Simulation has become one of the most time-
consuming tasks in Electronic System Level design, required
both on design and verification phases. As the complexity of
modelled systems increases, so do the need for adequate use of
available computational resources in multiprocessor computers
or clusters. SystemC simulator models are designed to use only
one core, even if the hardware is multi-core. In this paper, we
analyse 20 platforms, designed in SystemC, varying from 1 to
16 cores with 4 different processor models (ISAs), and evaluated
the SystemC kernel overhead for a set of 12 programs running
over those platforms, totaling 240 configurations. We split the
execution time into the simulation components and found out that
the major contributor to the simulation is the SystemC kernel,
consuming around 50% of the total simulator execution time.
This finding opens space for new research focusing on improving
SystemC Kernel performance.

I. INTRODUCTION

The complexity of Multiprocessor System-on-Chip (MP-
SoC) designs and the required simulation performance to
take advantage of design space exploration decisions in the
reduced time-to-market window, forces designers into an even
higher level design methodology, looking for faster tools to
accomplish their tasks. One such design alternative is to
replicate the full system in software to validate its functional
behavior, to evaluate its performance, or to explore architecture
design options [12].

A virtual platform is a fully functional model of a complete
system, containing higher level models for each component, to
mimic every piece of hardware and software of the target de-
vice. To construct virtual platforms, we focus on technologies
available under open-source licenses, such as SystemC [1],
OSCI TLM [4], and ArchC [3].

System Level Description Languages (SLDLs) provide a
collection of libraries of data types, kernel simulation, and
components for high level system modelling and simulation.
SystemC is a SLDL with modelling environment based on
C++ used for modelling and verification of systems at different
abstraction levels. Recently, SystemC has become the leading
choice of designers of SoCs (System-on-Chip) and embedded
processors [7], [5].

A limiting factor in accelerating the simulation of systems
modelled in SystemC is that the SystemC kernel is sequential
and based on discrete event simulation. Consequently, the
simulator executes a process at a time, even if the hardware

supports execution of concurrent processes [7], [8]. For ex-
ample, a virtual platform with 16 processors running in a
real multicore architecture uses only one core to execute the
simulation, scheduling the processors and other peripherals to
execute one at a time.

Currently, research at reducing the simulation time are
focused in distributed SystemC simulation, which consists
of distributing the simulation in multiple cores, and the best
performance improvement happens when the model design is
partitioned manually [7], [10], [14], [6]. These techniques do
not modify the SystemC scheduler.

The main goal of this paper is to profile CPU usage, during
SystemC simulations, in order to guide future performance
improvements efforts. We found out that, by splitting the
execution time into parts, the SystemC kernel CPU usage
approaches 50% of total platform simulation time. We evaluate
20 different platforms, varying from 1 to 16 processor cores of
4 distinct ISAs, and 12 different programs capable of running
in all platforms. By showing how the CPU is used during
simulations, we expect to contribute to future improvements
for simulation speed research.

This paper is organized as follows. Section II discusses
related work; Section III provides definitions and describes the
tools used in the experiments and the developed components;
Section IV briefly presents the ESLDiagram tool, and the
experimental results are shown in Section V; finally, we show
a brief analysis of the results in Section VI and conclude this
paper in Section VII.

II. RELATED WORK

In the past few years, the main focus on speeding up
SystemC simulations were focused on distributing the simula-
tions over the cores in a multicore computer, or over several
computer clusters.

Maia, Greiner and Pecheux[13] proposed to accelerate Sys-
temC simulators changing the SystemC kernel in order to
improve the Transaction Level Models (TLM) performance.
Based on this work, Mello et al. [14] defined a new engine
of parallel and distributed simulation capable of exploiting
the computational power of multiprocessor workstations. The
new kernel, named SystemC-SMP, is dedicated to the DT-TLM
model (TLM with distributed time). To use it, the platforms
must be changed, which limit SystemC-SMP usage. Moreover,



considering the simulation of a system with multiple cores
and some peripherals, the CPU time used by the processors is
significantly longer than the CPU usage by TLM peripherals.

In the proposal by Chopard et al. [6], a copy of the scheduler
will execute on each processing node and simulate a subset
of application modules. The consistency of the modified data
on a node is guaranteed through events between processes.
Later, Huang et al. [10] proposed a technique to increase
the performance of the SystemC simulations consisting of
the geographical simulation distribution based on the same
concepts described in [6]. To use these techniques, the designer
needs to decide how to distribute the peripherals over the
available processing units.

Ezudheen et al. [7] proposed a new scheduler to support
the parallel execution of SystemC process. The amount of
processes is linearly reduced with number of available cores.
The best performance gain happened when using the manual
partitioning technique. Through experiments, they concluded
that the simulation with the new scheduler obtained advantages
when compared to serial simulation and can contribute in
complex projects; however, it is a considerable limitation to
rely on manual partitioning to get the the biggest gain.

Schumacher et al. [16] implemented parallel simulation
through changes in the SystemC simulation kernel, in order
to accelerate the simulation of multiprocessor systems. It
is known that the synchronous approach introduces a high
overhead and requires centralized communication. The authors
reduced the communication latency and synchronization by
using an adaptive scheduling technique. To correctly handle
atomicity of shared resources data, all related process code
should be adapted.

III. INFRASTRUCTURE

In this paper, we use virtual platforms modelled in SystemC
and using Transaction Level Models (TLM) [12]. TLM allows
the benefit of reducing model development time, and leads to a
large improvement on simulation speed and modelling produc-
tivity, enabling new design methodologies. Although TLM is
language independent, SystemC fits perfectly its representation
style by allowing adequate abstraction levels and by providing
elements for isolating computation and communication. ArchC
is a Architecture Description Language (ADL) following a
SystemC syntax style, which provides enough information
in order to allow users to explore and verify a (new or
legacy) processor’s architecture by automatically generating
not only software tools for code generation and inspection
(like assemblers, linkers, and debuggers), but also executable
processor models for platform representation [15], [3]. In
our experiments, we use ArchC processor models and other
peripherals developed with TLM methodology.

Many processors include hardware performance monitoring,
which take the form of one or more counters, incremented each
time an event occurs. The so called hardware performance
counters allows very precise profiling tools like OProfile [2].
OProfile is a system wide profile for Linux, capable of
profiling all running code at low overhead using the hardware

performance counters. It is composed by a kernel driver, a
daemon for collecting sample data, and several post-profiling
tools for manipulating the results into information. We used
Oprofile tool in our experiments to generate the statistics about
the CPU usage, distinguishing between the CPU usage of the
SystemC kernel and of our components.

A. Platforms

This paper used a set of platforms ranging from 1 to 16 cores
in a shared memory environment. Each platform contains: a
set of processors (1 to 16), a shared memory, a hardware
lock device to enable the construction of atomic operations,
and an interconnection structure used to connect all platform
components, called router. Figure 5 shows an example of a
platform containing 16 processors.

proc_1 proc_2 proc_16
_ router _
7 7
memory lock

Fig. 1. Schematic of the 16-core platform example containing a router, one
shared memory and the lock peripheral.

All processors instantiated in each platform share an exter-
nal 512 MB memory that is connected by a TLM channel. We
also include a hardware lock device to allow the execution
of parallel applications since our processors and platforms
do not support atomic operations required to create software
locks. The platforms use a communication device called router
to interconnect all components. The router is a very simple
module, which essentially consists of TLM ports to connect it
to the memory and lock devices, followed by communication
interfaces with each instantiated processor.

Our platforms may have one of the following processors:
PowerPC, SPARC, MIPS, and ARM. All processors are mod-
elled on ArchC and the communication between processor
and external devices uses TLM ports. Al processors have
32-bit wordsize. PowerPC model implements the PowerPC
32 bits instruction set, including ABI emulation; MIPS is
a MIPS-I ISA description, including delay slots, and ABI
emulation; SPARC model implements the V8 version of the
SPARC architecture, including delay slots, window registers
and ABI emulation; the ARM model implements the ARMvSe
instruction set, including ABI simulation. Table I list a few
more details of each processor.

For each processor, five different base platforms were de-
signed, varying the number of cores in each one (1, 2, 4, 8, and
16 cores). As we have four different available processor mod-
els, we have 20 different platform configurations. Considering
that a platform is not directly related to the application, and we
have 12 different multicore applications, our experiments use a
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Number of instructions executed for each application. To make it easy to visualize the results, we divided the applications into two categories, one

with lower computational load (lower total instruction count) and the other with higher computational load (higher total instruction count).

TABLE I

PROCESSOR ARCHITECTURAL CHARACTERISTICS

Processor | Register Orhers ISA | Endian
Bank Registers

PowerPC 32 13 181 big

MIPS 32 3 59 big

SPARC 32 256 118 big

ARM 31 20 100 little

universe of 240 different configurations of parallel software on
multicore platforms. Still, it is possible to perform 16 single-
core application of Mibench benchmark suite simultaneously
and independently in a 16-core environment, adding extra 8
configurations.

B. Applications

All applications were compiled for each of the four al-
ready mentioned processor models using an appropriate cross-
compiler infrastructure. The application source code were
adapted from their original benchmark suites:

o ParMiBench [11]: Is a benchmark suite composed by

parallel versions of the traditional MiBench benchmark.
We used the following applications: sha, dikjstra, susan-
corners, stringsearch, susan-smoothing, susan-edges, ba-
sicmath;

o Splash-2 [17]: Is a benchmark suite composed by highly
configurable parallel applications. We used the following
applications: fft, lu, water, water-spatial;

o MiBench [9]: Is a benchmark suite composed of sev-
eral sequential applications divided into categories. We
used the following applications: bitcount, susan-corners,
susan-edges, susan-smoothing, basicmath, dijkstra, gsort,
stringsearch, sha, rijndael-enc, rijndael-dec, fft, blowfish-
enc, blowfish-dec, adpcm-enc, adpcm-dec. We used the
single-core versions and adapted them run simultaneously
on a 16-core platform.

We chose some of the possible configurations to charac-

terize the applications according to their computational load.
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16 different applications in a unique 16-core platform
Fig. 3. Number of instructions executed in the 16-core platform running

different and independent single-core applications.

Figures 2(a) and 2(b) show the amount of instructions executed
on a 16-core platform running parallel applications with lower
computational load (low total number of instructions) and
higher computational load (higher total number of instruc-
tions), respectively. Figure 3 shows the amount of instructions
executed by 16 different applications running on a 16-core
PowerPC platform.

IV. PLATFORM DIAGRAM

Any attempt to exploit SystemC simulators requires knowl-
edge about the data structures created for model description.
To facilitate this task and to make easy to visualize platform di-
agram, we designed a runtime tool to be called during the elab-
oration phase of a platform to automatically create a diagram
of the platform. The ESLDiagram has access to the SystemC
simulation kernel data structures and collects the data needed
to generate the diagram, such as the name of instantiated
modules, classes they belong to and the connections between
them. To use this new tool, it is only necessary to update the
sc_main () to include a call to ESLDiagram, as outlined in
Figure 4, immediately before calling sc_start (). It is not



necessary to modify any SystemC module. After executing
the platform, ESLDiagram generates a PDF file containing
the representative diagram of all created modules and their
connections. An example of this output is shown in Figure 5,
where a dual-core PowerPC processor is connected to a router
which is connected to peripherals memory and a lock.

sc_simcontext* my_sim = sc_get_curr_simcontext();
ESLDiagram dotDiagram (my_sim);
dotDiagram. startCapture () ;

Fig. 4. Code that must be inserted after elaboration phase for generating
diagram with ESLDiagram tool.

mipsl mips2 mips3 mips4
mips1_port_0 mips2_port_0 mips3_port_0 mips4_port_0
(sc_port) (sc_port) (sc_port) (sc_port)

tim_router

router_port_1 router_port_0 router_pléport

(sc_port) (sc_port) (sc_export)
tim |lock tim_memory

locker_iport mem_iport

(sc_export) (sc_export)

Fig. 5. A example of a 4-cores PowerPC platform, including all SystemC
components.

V. EXPERIMENTAL RESULTS

We started performing simulations on our set of platforms
using the PowerPC processor, and used the OProfile tool to
characterize the CPU usage by the various components in the
platform and by the simulation kernel. Figure 6 compares the
CPU usage by the simulation kernel in simulators with 1 and
16 processors, running 11 different applications. As we can
see, the kernel overhead is near 50% with a small variability
when increasing the number of components in most of the
platforms.

Any conclusion on the CPU usage by the simulation kernel
should consider that the platform with only one processor
contains, in total, four modules (processor, memory, router,
and lock); in contrast, a simulation of a platform with 16 pro-
cessors contains 19 modules (16 processors, memory, router,
and lock). For example, 53% of the simulation corresponds to
the simulation kernel on a platform of 16 processors running
basicmath; this means that the other 19 modules used the
47% of the CPU. In a single core version of this platform
the kernel CPU usage was 62%, while the CPU usage of
the others four modules was 38%. To demonstrate that this
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Fig. 6. SystemC kernel CPU usage over 16-cores and single-core PowerPC
platforms.

behavior holds for the other applications, we summarized the
results in Figure 7 that shows the average CPU use for all
applications in the 16 cores platform. SystemC kernel refers
to the simulation kernel CPU usage; Processor refers to the
processor behavior CPU usage; TLM peripherals refers to
the use of CPU by TLM peripherals (router, memory, and
lock); finally, Others refers mainly to the use of operating
system kernel (basically for input and output file access).

Simulation CPU Usage

M Processor M SystemC M Others

kernel

TLM
peripherals

Fig. 7. Average percentage of CPU usage for all applications on a 16-core

platform.

Next, we evaluated the four processor models using all
available applications. Figure 8 shows a stacked bar graph
detailing the average CPU usage. As with the PowerPC
graphs, the SystemC kernel uses around 50% of all processing
resources during the simulations. The other 30% are consumed
by the processor model behavior, where we can notice the
difference in implementation complexity and optimization
among all four models.

The SystemC simulation is non-preemptive, i.e., a SystemC
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thread runs until finished or until it makes a wait () function
call; when a wait () is called, there will be a context switch
between SystemC threads and it requires the state of the
simulation threads to be properly stored for later retrieval.
Since the SystemC kernel is sequential, it is necessary that
the ArchC processor model calls wait () after the execution
of each instruction, or a small amount of them. This leads to
a large number of context switches between SystemC threads.

In order to gauge the impact of large amount of context
switches, we counted the number of dynamic calls to wait ()
in our simulations, varying the number of processors. We
divide ten applications of ParMiBench [11] and SPLASH-
2 [17] benchmarks in two groups, according to the increase in
number of instructions performed as the number of processors
increases. In Group 1 we include applications that do not have
a significant variation in the amount of instructions performed
as the amount of processors increased; we put in Group
2 the applications that vary significantly the computational
load as the amount of processors. This increase is caused by
scalability of applications (week or strong scaling) or by the
significant increase in communication between processors. The
experimental results are available in Figures 9(a) and 9(b).

The applications in Figure 9(a) do not increase the work size
when divided into more cores. This makes the total processing
time almost stable with the same amount of SystemC context
switches. Since we executed a version of ArchC that calls one
wait for every instruction, this graph also represents the total
number of instructions executed. The slight increase in the
number of instructions, as the number of cores is increased,
represents the extra overhead to divide the data working set
into more cores.

In Figure 9(b), all application threads have a fixed amount
of work to be done. In this case, when we increase the number
of cores, there is an increase in the number of wait calls and
thus in the total number of instructions.

To demonstrate that the simulation performance decreases
when we increase the number of processors in multicore
platforms, we also measured the execution time of simulation

platforms 1, 2, 4, 8 and 16 processors. Figures 10(a) and 10(b)
show the results. We notice that the simulation time increases
for both application groups, although the increase for the weak
scaling group (Group 2) is higher.

VI. ANALYSIS

The experimental results show that the simulation kernel
takes about 50% of simulation time, on platforms varying from
1 to 16 cores, using four different models of processors, and
this fact exposes the SystemC kernel as the major bottleneck
that causes delays in the simulation and the best opportunities
to improve simulation performance. The large number of
wait function call in the simulations, required to simulate
multiprocessor systems in a sequential simulation kernel,
shows that decreasing the number of context exchange among
SystemC processes can result into considerable improvement,
without requiring changes in the design.

One approach to optimize the simulation speed is to re-
duce the number of wait calls through distribution of the
simulation modules into the real processor while simulating
platforms. Each SystemC thread is mapped as an operating
system thread and can proceed independently of the others
until a explicit synchronization point but the SystemC kernel
restricts this behavior by serializing them. A optimistic scheme
of synchronization between threads in a discrete event-based
simulation will be able to obtain great improve of performance.
This is possible in the version 2.3 of SystemC, which has a
temporal decoupling mechanism using the TLM 2.0 standard.

Another approach is to optimize the scheduling algorithm.
Originally, the SystemC scheduler has a queue of ready pro-
cess and selects one of these process to execute in a single-core
environment. In order to exploit temporal and spatial locality
and to not degrade the performance of the cache memory
system, we will implement and verify different scheduling
policies.

VII. CONCLUSION

This paper has presented a representative set of experiments
on virtual platform simulators modelled in SystemC. The
experimental results show that the simulation kernel takes
about 50% of simulation time, on simulations of multipro-
cessor systems, given the large number of context switches
in the simulation; hence, we have provided an effective set
of evidence that the effort to speed-up SystemC simulators
through time reduction of scheduling and the CPU use by the
kernel can obtain good improvements.
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