
Structure-Constrained Microcode Compression

Edson Borin

University of Campinas

Campinas, Brazil

edson@ic.unicamp.br

Guido Araujo

University of Campinas

Campinas, Brazil

guido@ic.unicamp.br

Mauricio Breternitz Jr.

AMD

Sunnyvale, USA

mbreternitz@google.com

Youfeng Wu

Intel Labs

Santa Clara, USA

youfeng.wu@intel.com

Abstract—Microcode enables programmability of (micro)
architectural structures to enhance functionality and to apply
patches to an existing design. As more features get added to a
CPU core, the area and power costs associated with microcode
increase. One solution to address the microcode size issue is to
store the microcode in a compressed form and decompress it
during execution. Furthermore, the reuse of a single hardware
building block layout to implement different dictionaries in
the two-level microcode compression reduces the cost and the
design time of the decompression engine. However, the reuse
of the hardware building block imposes structural constraints
to the compression algorithm, and existing algorithms may
yield poor compression. In this paper, we develop the SC2

algorithm that considers the structural constraint in its ob-
jective function and reduces the area expansion when reusing
hardware building blocks to implement different dictionaries.
Our experimental results show that the SC2 algorithm is able
to produce similar sized dictionaries and achieves the similar
compression ratio to the non-constrained algorithm.

I. INTRODUCTION

Microprogramming is a widely known technique used to

implement processor control units. Microcode makes the

control unit design process easier, as it can be modified to

enhance functionality and to apply patches to an existing

design.

As more features get added to a CPU core, the area and

power costs associated with the microcode increase. The cost

of microcode ROM storage (µROM) is particularly critical

in cores for applications requiring small footprint dies and

reduced power consumption, like embedded processors and

CPUs that contain arrays of cores on the same die.

One solution to address the microcode size issue is to

store the microcode in a transformed representation (com-

pressed) and decompress it during execution. In fact, since

the introduction of microprogramming in 1951, by Maurice

Wilkes [19], many compression and encoding techniques

had been proposed to reduce the microcode size [1], [4],

[7], [8], [9], [10], [15], [16], [17], [18], [22]. Most of these

techniques date from the sixties and the seventies. With

the introduction of RISC machines in the eighties, there

was a noticeable decrease of interest in microcode in the

research community, as many of the programmable HW

functionalities are migrated to SW. However, recent trends

have migrated more and more advanced functionalities, such

as protection, virtualization and management assistance, to

the microcoded portion of a CPU core, and the microcode

growth caused by these new features forced the industry to

revisit the microcode size problem [4].

A recent work [4] successfully explored a two-level

microcode organization to compress the micro-code of high

performance processors. This technique, outlined in Sec-

tion III, replaces the original microinstructions by pointers

to dictionaries that hold bit patterns extracted from the

microcode. The “pointer arrays” and the “dictionaries” are

ROMs that store the pointers and the bit patterns, respec-

tively. The technique allows the microcode columns to be

grouped into clusters, so that the number of bit patterns

inside the dictionaries is reduced.

When developing the decompression engine in the two-

level microcode compression [4], the logic designer must

create hardware modules for the “pointer array” and for each

dictionary. Although CAD tools are able to automatically

generate these pieces (or modules) of hardware from high

level descriptions, these automatically generated modules

are not power and performance efficient. Therefore, in these

cases, part of the hardware must be custom-designed.

Custom-designed hardware is intensive in human resource

and is very time consuming. On the other hand, the design

of reusable hardware modules allows architects to leverage

previously validated modules, considerably reducing the

design time. In this spirit, we propose using the same

hardware building block for all dictionaries (a.k.a. ’unique

pattern arrays’) to reduce the compressed microcode design

effort. In other words, a single ROM design would be used to

implement the different dictionaries. We call this approach

Structure-Constrained Microcode Compression.

The contributions of this paper are summarized as follows:

• It proposes the reuse of the same hardware building

block to implement different dictionaries in the mi-

crocode compression design. This reduces the cost and

the designing time of the decompression engine.

• It proposes SC2, a new structure-constrained clustering

algorithm to reduce the wasted area and improve the

compression ratio when reusing hardware blocks for the

dictionaries. The new algorithm is also applicable to a

range of similar problems whose solution set requires

equal-sized clustering.

The rest of the paper is organized as follows. Sec-

tion II outlines the related work. Section III discusses

the microcode compression and the structure-constrained

compression techniques. Section IV describes the structure-

constrained compression (SC2) algorithm. Section V shows

the experimental results, and Section VI concludes the paper.

II. RELATED WORK

Since the introduction of microprogramming in 1951 [19],

many compression and encoding techniques had been pro-

posed to reduce the microcode size.

Assuming the original µROM has M unique micro-

instructions, maximal encoding [7] replaces each microin-

struction in the µROM by a ⌈log2M⌉ bit codeword.

A decoding logic is attached to the output bits of the

µROM and whenever a codeword is fetched, the decoding

logic converts it into the original microinstruction bits. The

decoding logic, added after the compressed µROM, can be

very complex and the extra area and delay added by it can

nullify the compression benefits.

In 1968, Schwartz [16] proposed a method to reduce the

complexity of the decoding logic called minimal encoding.

This method grouped mutually exclusive micro-operations

into microinstruction fields. In this way, the decoding logic

could be implemented with simple decoders.

In the indirect encoding, or bit steering [1], the microin-

struction bits are split into fields and the meaning of a

field depends on the value of a control field. The control

field makes it possible to classify the microinstructions in

formats, which allows a higher degree of encoding. Similarly

to the maximum encoding, the decoding logic can become

complex, therefore, the indirect encoding must be used

carefully.

Stritter and Tredennick [9], [17], [18] investigated the

two-level control store to reduce the size of the Motorola

MC68000 microcode. In this model, the microcode is

stored in two ROMs, the µROM and the nanoROM. The

µROM contains microinstructions, which are pointers to

nanoinstructions stored into the nanoROM. The nanoinstruc-

tions contain the data path control bits. Menzilcioglu [15]

improved the two-level control store by using multiple

nanoROMs to store the different fields of the nanoinstruc-

tions. However, the author did not show any method to

identify and group the microcode fields into the nanoROMs.

Zhao and Papachristou [22] used a similar compressing

model and proposed a heuristic to identify and group mi-

crocode fields into the nanoROMs.

Ishiura and Yamaguchi [11] used a two-level organization

to reduce the size of VLIW code in application specific

VLIW processors. They also proposed a heuristic to maxi-

mize compression by grouping similar VLIW bits into the

same ROMs.

Hum et al. [10] patented a microcode compression scheme

similar to the two-level control store. In their scheme, the

microcode columns were grouped into tables, similar to

the nanoROMs, and the compressed microcode, containing

pointers to the tables, was stored into the µROM. Borin et

al. [4] proposed three algorithms to improve the compression

ratio by grouping similar columns into the same tables.

Another approach to the problem was to design algorithms

that could efficiently compact operations into microinstruc-

tions [8]. These techniques evolved to what is nowadays a

set of compiling methods used in code generation for VLIW

machines.

Recently, many hardware based code compression tech-

niques had been proposed to reduce the code size in em-

bedded systems [3]. Most of these techniques demands ex-

pensive multi-cycle decompression engines and/or control-

logic, and in many cases, the decompression engine is

placed between the cache and the main memory, so that

the performance overhead is hidden on the cache miss

penalty [13]. Since the microcode storage system does not

have a cache memory, such approaches are less desirable

when decompressing the performance critical microcode

from the µROM.

In this work we use a compression scheme similar to

the two-level control store organization. However, instead

of µROM and nanoROMs, we refer to these structures as

“pointer array” and “dictionaries”. Next section introduces

the two-level storage based microcode compression scheme.

III. MICROCODE COMPRESSION

The basic idea behind microcode compression is to

identify a set of unique bit patterns that compose the

microinstructions and to store them into a “dictionary” of

unique patterns. The original microinstructions are replaced

by pointers to the patterns in the “dictionary” as shown

in Figure 1. In this figure, µAddr is the address of a

microinstruction. In the uncompressed form, the µAddr

directly access the µROM to fetch a microinstruction. In

the compressed form, the unique microinstructions are stored

into the “dictionary” (DIC), and only the index to the pattern

in the “dictionary” is stored into the “pointer array”. Assume

the original µROM has N microinstructions each with L
bits, and there are a total of M unique microinstructions.

The original µROM takes N × L bits and the compressed

µROM takes only N × ⌈log2M⌉ + M × L bits (where

N×⌈log2M⌉ is the size of the “pointer array” and M×L is

the size of the “dictionary”). For N = 20, 000, M = 12, 000,

and L = 70 the compressed µROM uses 1, 140, 000 bits

while the original µROM uses 1, 400, 000 bits. This is

approximately 19% reduction in bits. Note: in this discussion

we use the number of bits in the µROM as an estimate for

its area requirements. Borin et al. [4] presented experimental

results from layout estimates showing that reductions in

actual µROM size are in line with this estimate.

Notice that the “pointer array” and the original µROM

have the same number of entries (N). This means that the

µInstr

Before

DIC

P
o
in

te
r

A
rr

ay

After

µROM
µAddr µAddr µInstr

Figure 1. Basic microcode compression idea.

original and the compressed microinstructions have the same

address space. Therefore, unlike other code compression

techniques, the decompression engine does not require an

address translation mechanism [2], [20], [21] and the mi-

crocode does not need to be patched [6], [12].

An improvement of the above approach is to split the

microinstruction into a number of fields such that the number

of unique patterns for each field is minimized. The idea is to

take advantage of the entropy within each field. For example,

even though a microinstruction may have, say, upwards of

70 bits, there are fields such as ’opcode’ (about 8 bits),

in which there is not much variation and in which a few

values are dominant. Figure 2 shows an example where each

microinstruction is split into two roughly equal-sized fields.

Assume M1 and M2 are the number of unique patterns

for the two halves. The original µROM takes N × L bits

and the compressed µROM takes only N × (⌈log2M1⌉ +
⌈log2M2⌉)+M1×L/2+M2×L/2 bits. For N = 20, 000,

M1 = 5, 000, M2 = 5, 000, and L = 70 the compressed

µROM uses 20, 000 × 26 + 5, 000 × 35 + 5, 000 × 35 =
870, 000 bits while the original µROM uses 1, 400, 000 bits.

This is approximately 38% reduction in number of bits.

µInstr

P
o
in

te
r

A
rr

ay
2

P
o
in

te
r

A
rr

ay
1

N

L/2

L/2

M1

M2

D1

D2

µAddr

⌈log2M2⌉

⌈log2M1⌉

N

Figure 2. Partitioned compression.

The key observation from the above approach is that with

a proper partitioning of the µROM into subsets of columns,

the number of unique patterns in the partitions is reduced

and thus the total area will be reduced.

The clustering-based compression selectively groups sim-

ilar columns into clusters, and goes beyond the simple

partitioning of the microinstructions into fields composed

of adjacent bits. For instance, Figure 3 shows a simple

partitioning of each microinstruction into two fields. With

this partitioning, each one of the two partitions has three

different patterns and requires two bits to index the unique

patterns. Therefore, the compressed form needs 10 × (2 +
2) + 3× 3 + 3× 3 = 58 bits, less than 4% reduction from

the original 60 bits size.

Col 1 Col 2 Col 6Col 3 Col 4 Col 5
1
0
1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1
0
1

1
0
1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1
0
1

1
0
1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1
0
1

Figure 3. Simple partitioning method.

The clustering-based compression groups columns that are

similar to each other into clusters. For example, the sample

microcode columns in Figure 3 may be grouped into the two

clusters shown in Figure 4, where columns 1, 3, and 5 are

grouped into the first cluster and columns 2, 4, and 6 are

grouped into the second cluster. With this new clustering,

both clusters have only two unique patterns and need only a

single bit index. As a result, the compressed form requires

only 10 × (1 + 1) + 2 × 3 + 2 × 3 = 32 bits, nearly

50% reduction, significantly better than the basic partitioning

method.

Col 3
1
0
1
0
0
1
0
0
1
0

Col 1
1
0
1
0
0
1
0
0
1
0

Col 5
1
0
1
0
0
1
0
0
1
0

0
0
1
0
0
1
0
1

Col 2
0
1

Col 4
0
1
0
0
1
0
0
1
0
1

Col 6
0
1
0
0
1
0
0
1
0
1

Figure 4. Clustering method.

Figure 5 shows how to access the microinstruction in

the clustering method. In this case, there is a new com-

ponent for each cluster, called “spreader”, which spreads

the dictionary output bits into the appropriate position in

the final microinstruction. In other words, the spreader is a

rewiring of the original path which connects the output to

the microinstruction and should not cost any additional die

area or power. Notice that this method is not limited by the

number of clusters, and sometimes 3 or more clusters are

possible.

D2

µAddr
µROM

µAddr

Before

After

Spreader

Spreader

P
o
in

te
r

A
rr

ay
2

P
o
in

te
r

A
rr

ay
1

µInstr
µInstr

D1

Figure 5. Accessing a microinstruction in the clustering method.

For easy of understanding, Figure 2 and 5 show distinct

memory blocks for each “pointer array”. However, the

“pointer arrays” have the same number of lines as the

original µROM and always fetch data using the same µAddr,

therefore, they can be stored into a single memory block

and the output bits routed to the appropriate “dictionaries”.

Another interesting observation is that some uncompressed

columns can also be placed into the same memory block as

the pointer arrays. In this case, the output bits corresponding

to the uncompressed columns are routed directly to the

output microinstruction bits. Figure 6 provides a pipelined

version of the decompression engine representing the pointer

arrays and the uncompressed columns in the same memory

block.

µAddr

2
nd Stage1

st Stage

µInstr

U
n
co

m
p
re

ss
ed

C
o
ls

P
o
in

te
r

A
rr

ay
2

P
o
in

te
r

A
rr

ay
1

D2

D1

Figure 6. Pipelined decompression engine layout organization.

The clustering-based compression scheme relies on group-

ing similar columns to minimize the number of patterns

in each dictionary. However, some columns may be very

different from the other columns and may significantly

increase the number of patterns if placed into a dictionary

with other columns. Therefore, it is sometime beneficial to

place these columns into the uncompressed columns array.

A. Structure-Constrained Compression

The design of the decompression engine makes use of

memory blocks to implement the pointer array and the

dictionaries. Although computer aided design (CAD) sys-

tems can automatically generate these hardware blocks from

high level descriptions, in some cases the results are not

satisfactory and these blocks must be manually designed.

High performance microprocessors are examples of projects

that still require these blocks to be manually designed.

Manually designed hardware blocks are very expensive

in terms of human resources and time. In order to minimize

these costs, previously designed hardware blocks are reused

whenever possible. As an example, it is possible to create

a memory block with 1024 × 32 bits using two blocks of

512× 32 bits, previously designed and tested, and an extra

combinational circuit.

In order to reduce the cost and design time of the

decompression engine, we propose the reuse of the same

hardware building block to implement different dictionaries.

This way, a single ROM design would be used to implement

the different dictionaries. We call this approach Structure-

Constrained Microcode Compression. The main challenge

of this approach is that the decompression engine may have

many dictionaries with different sizes and the hardware may

be under utilized, affecting the final area compression ratio.

As an example, suppose a compressed microcode with

two dictionaries, D1 and D2. If D1 has 20 columns and 500
patterns and D2 has 34 columns and 100 patterns, we could

design a memory block with 34 columns and 500 lines and

reuse it to implement the two dictionaries. Notice that D1

would not use 14 of the 34 columns and D2 would use only

100 out of the 500 lines. Figure 7 shows a decompression

engine where the two dictionaries are implemented with the

same hardware block. The hashed area shows the hardware

block region which is not used by the dictionaries.

34

34

· · ·

· · ·

Hardware block

P
o
in

te
r

A
rr

ay
2

P
o
in

te
r

A
rr

ay
1

D1

D2 · · ·

Spreader

µaddr

5
0
0

5
0
0

20
1
0
0

Spreader

µinstr

Figure 7. Dictionaries implemented using the same hardware block design.

We define two compression ratio metrics to measure the

waste of area when applying the structure-constrained com-

pression: structure-constrained compression ratio (CRstr)

and regular compression ratio (CRreg). The structure-

constrained compression ratio assumes that all dictionaries

have the same shape (columns×lines) when computing the

compression ratio. For instance, assuming that the microcode

from Figure 7 has 2000 lines and 54 columns, the structure-

constrained compression ratio is:

CRstr =

Pointer Array Size
︷ ︸︸ ︷
(⌈log2500⌉+⌈log2100⌉)×2000 +

Dictionaries Size
︷ ︸︸ ︷
500×34+500×34

54×2000

= 61%

While the regular compression ratio is:

CRstr =

Pointer Array Size
︷ ︸︸ ︷
(⌈log2500⌉+⌈log2100⌉)×2000 +

Dictionaries Size
︷ ︸︸ ︷
500×20+100×34

54×2000

= 42%

Notice that there is a 19% difference between the regular

compression ratio and the structure-constrained compression

ratio. This difference indicates the area wasted by reusing

the same hardware block to implement the dictionaries.

In order to reduce the area loss caused by the memory

block reuse, it is important to generate dictionaries with

similar sizes. However, to the best of our knowledge,

the existing clustering-based microcode compressing algo-

rithms [22], [11], [4] do not try to generate similar shaped

dictionaries. In fact, our experimental results, shown in

Section V, indicate that these algorithms can produce poor

structure-constrained compression ratios when compressing

the microcode. The main reason is that these algorithms try

to minimize an objective function F that does not reflect

the waste of area caused by the hardware block reuse. To

describe the unconstrained objective function F and the

structure-constrained objective function Fstr, we define the

following terms:

• L: the number of columns in the µROM;

• N : the number of bits in each column;

• K: the number of clusters in which the L columns are

grouped into;

• L0: the number of uncompressed columns;

• L1,L2, · · · ,Lk: the number of columns in each cluster

1, 2, · · · , K;

• M1, M2, · · · , Mk: the number of unique patterns in

clusters 1, 2, · · · , K.

The existing clustering-based microcode compression al-

gorithms [22], [11], [4] try to find K clusters (or dictionar-

ies) such that the following objective function is minimized:

F =

Uncomp.Cols
︷ ︸︸ ︷

N × L0 +

K∑

i=1

PointerArrayi

︷ ︸︸ ︷

N × ⌈log2Mi⌉+

K∑

i=1

Dictionaryi

︷ ︸︸ ︷

Mi × Li

The F objective function computes the size of the de-

compression engine, in terms of bits, assuming that the

uncompressed columns and the pointer arrays will be stored

together, using a single memory block, as in Figure 6, and

each dictionary will be implemented using a hardware block

specially designed to match the dictionary size. In this way,

minimizing F does not guarantee that the dictionaries will

have similar number of columns and patterns.

In order to represent the waste of area caused by the

hardware block reuse, we modeled the structure-constrained

microcode compression problem using the following objec-

tive function:

Fstr =

Uncomp. Cols
︷ ︸︸ ︷

N × L0 +

K∑

i=1

Pointer Arrayi

︷ ︸︸ ︷

N × ⌈log2Mi⌉ +

K × (
K

max
i=1

[Mi] ×
K

max
i=1

[Li])
︸ ︷︷ ︸

HW Block size

The Fstr objective function computes the size of the

decompression engine, in terms of bits, when using the

same hardware block to implement all the dictionaries. The

first two parts of the objective function sum the size of the

uncompressed columns and the pointer arrays, and the third

part computes the size of the dictionaries by multiplying

the number of dictionaries (K) by the size of the common

hardware block which is able to store the dictionaries.

Again, the existing clustering-based compression algo-

rithms [22], [11], [4] were not designed to minimize Fstr

and were not able to generate similar dictionaries in our

microcode compression experiments. Consequently, we pro-

pose the SC2 algorithm, a Structure-Constrained Clustering

algorithm that is able to minimize the objective function

Fstr by generating similar shaped dictionaries. Next section

presents the SC2 algorithm.

IV. THE STRUCTURE-CONSTRAINED CLUSTERING

ALGORITHM

The goal of the SC2 algorithm is to group similar columns

into clusters so that the objective function Fstr is minimized.

We use the SC2 algorithm to explore regularity in the

dictionaries when compressing microcode. Let K be the

number of dictionaries used in the compression and Lfix

the fixed number of columns in each dictionary. The pair

K, Lfix defines a structure-constrained compression config-

uration. For instance, the pair {2, 40} constrains the column

clustering process to two clusters, with 40 columns each. To

identify the set of possible pairs of configurations, we limit

the maximum number of dictionaries to DMax (such as 10).

Then, for i in 2 to DMax, and j in 1 to ⌈L/i⌉, we create

the configuration pair i, j. As an example, for a microcode

with L = 80 columns, we create the following configuration

pairs: {2, 1}, {2, 2}, {2, 3}, · · · , {2, 40}, {3, 1}, · · · , {3,

26}, {4, 1}, · · · , {10, 8}. Notice that, the maximum number

of configurations {i, j} is finite as i×j < L. When i×j < L,

the clustering algorithm selects L − i × j columns as the

uncompressed columns.

For each of the configuration pairs, the SC2 algorithm

clusters the microcode columns using the following clus-

tering algorithm, and the compression generated for the

configuration with the best compression ratio is chosen as

the final result.

For a given configuration pair {i, j}, the clustering

algorithm first takes a set of input constraints and performs

a naı̈ve initial grouping of the i× j columns into i clusters

and L− i×j columns to a separate cluster of uncompressed

columns. Then it moves and exchanges columns between

clusters so that the initial clustering is improved according

to the objective function Fstr. Figure 8 shows the pseudo-

code for the clustering algorithm.

The “naı̈veClustering” function performs the initial clus-

tering so that the input constraints are not violated. Also,

the “selectBestOperation” function only selects move and

exchange operations that do not violate the constraints. In

this way, the final result always honors the input constraints.

1: BestClustering ← naı̈veClustering(Constraints)

2: repeat

3: CurrentC ← BestClustering
4: improved← false

5: unlock({c1, c2, . . . , cL})
6: repeat

7: op← selectBestOperation()

8: if op.type = EXCHANGE then

9: exchangeColumns (op.c1, op.c2)

10: lock ({op.c1, op.c2})
11: else if op.type = MOVE then

12: moveColumn (op.c1, op.D2)

13: lock ({op.c1})
14: end if

15: if Fstr(CurrentC) < Fstr(BestClustering)
then

16: BestClustering ← CurrentC
17: improved← true

18: end if

19: until there are no more valid operations

20: until improved 6= true

Figure 8. The pseudo-code for the clustering algorithm.

The kernel of the algorithm, comprised by the inner-

most loop (lines 6-19), continuously moves and exchanges

columns between clusters to improve the current clustering.

If the operation improves the objective function (Fstr), the

best clustering is updated (lines 15-18). Whenever a column

is moved from one cluster to another, the column is locked

(lines 10 and 13) and it is not moved to another cluster until

it became unlocked. The “selectBestOperation” function

does not select operations that invalidate the input constraints

or operations that move or exchange locked columns. In this

way, when there are no more valid operations, the kernel of

the algorithm finishes. If the best clustering was improved

(line 20), all the columns are unlocked and the kernel of

the algorithm is executed again to improve the current best

clustering. When the algorithm is not able to improve the

best clustering anymore, it returns the best clustering found

so far.

The “selectBestOperation” function (line 7) may select

operations that results in negative gains when there are no

more positive gain operations. Although these negative gain

operations increase Fstr, subsequent operations may im-

prove it again, making it even better than it was before. The

clustering algorithm relies on these negative gain operations

to escape from locally optimum results and reach better

results.

The SC2 algorithm described above was motivated and

is illustrated with respect to its application to the microcode

compression problem. This solution also applies to compu-

tational (and design) tasks that are mapped into a search

for equal-sized clusters benefit from the presented solution.

One example is VLSI chip partitioning [14] for designs that

do not fit in a single-chip solution (or FPGA), parts of the

design are separated into similar-sized portions (according to

an ’area estimation’ function) while minimizing inter-cluster

communication.

V. EXPERIMENTAL RESULTS

We have applied the structure-constrained microcode

compression algorithm to four different microcodes for

production processors. The first microcode, for a desktop

processor, contains 22, 528 microinstructions with 75 bits

each. The second one is for a laptop processor, and the last

two are for mobile-class processors. Table I summarizes the

microcodes used in our experiments.

Table I
MICROCODES DESCRIPTIONS.

µCode # Cols # Lines Size in bits Class

A 75 22 528 1 689 600 Desktop

B 234 6 656 1 557 504 Laptop

C 236 5 632 1 329 152 Mobile-

D 240 5 632 1 351 680 Class

We first apply the existing non-structure constrained algo-

rithms [22], [11], [4] to the microcodes. Table II shows the

best regular compression ratio achieved by the existing algo-

rithms and its respective structure-constrained compression

ratio for microcodes A, B, C, and D.

Table II
BEST REGULAR COMPRESSION RATIO AND THE RESPECTIVE

STRUCTURE-CONSTRAINED COMPRESSION RATIOS.

µCode
Non Constrained Compression [22], [11], [4].

CRreg CRstr Difference

A 49.54% 52.83% 3.30%

B 50.46% 58.93% 8.47%

C 52.70% 61.29% 8.59%

D 63.03% 85.65% 22.62%

The last column of Table II shows the difference between

the regular and the structure-constrained compression ra-

tio. Notice that, in microcode D, the structure-constrained

compression ratio is more than 22% higher than the regular

compression ratio. Again, this difference is due to the irreg-

ular size of the dictionaries. In the best regular compression

result, microcode D was compressed using nine dictionaries,

where the second dictionary had the biggest number of

columns (33), and the third one had the biggest number

of patterns (1, 728). The structure-constrained compression

ratio was computed using memory blocks with 33× 1, 728
bits for the dictionaries. Table III shows the dictionaries

configuration for the microcode D compression.

Table III
DICTIONARIES SIZES FOR THE MICROCODE D COMPRESSION.

Dictionary # Columns # Patterns

1 30 1018

2 33 923

3 20 1728

4 18 501

5 18 968

6 30 995

7 20 999

8 32 863

9 14 940

Uncompressed Columns 21 –

Table IV shows the structure-constrained compression

ratios computed from our new SC2 algorithm when con-

straining the number of columns per dictionary. The respec-

tive regular compression ratios and the number of columns

per dictionary are also shown. For example, microcode A
was compressed using 2 dictionaries, each containing 32
columns, and the difference between the regular compression

ratio and the structure-constrained compression ratio is only

0.52%.

Notice that the SC2 algorithm does not limit the num-

ber of patterns in each dictionary. However, the results at

Table IV show that constraining the number of columns

in each dictionary is enough to generate dictionaries with

similar number of patterns. In fact, the small difference

Table IV
BEST STRUCTURE-CONSTRAINED AND CORRESPONDING REGULAR

COMPRESSION RATIOS FOR THE SC2 ALGORITHM.

µCode
Cols SC2 Algorithm

Dicts. per Dict. CRreg CRstr Diff.

A 2 32 51.15% 51.67% 0.52%

B 3 24 51.12% 51.15% 0.03%

C 8 26 53.66% 55.07% 1.42%

D 9 22 66.33% 66.50% 0.17%

between CRreg and CRstr indicates that the numbers of

patterns in the dictionaries are similar. Also, notice that the

structure-constrained compression ratio achieved by the SC2

algorithm is consistently better than those produced by the

existing algorithms (Table II).

We define the “structure-constrained compression cost”

as the difference between the best structure-constrained

compression ratio (CRstr) and the best regular compression

ratio (CRreg). This cost indicates the extra area required

to compress the microcode when using the same hardware

block design to implement the different dictionaries. Table V

shows the compression ratios for the non-constrained and

SC2 algorithms and the structure-constrained compression

cost for each microcode.

Table V
STRUCTURE-CONSTRAINED COMPRESSION COST.

µCode

Non Constrained SC2

CostAlgorithms [22], [11], [4]. Algorithm

CRreg CRstr CRreg CRstr

A 49.54% 52.83% 51.15% 51.67% 2.13%

B 50.46% 58.93% 51.12% 51.15% 0.69%

C 52.70% 61.29% 53.66% 55.07% 2.37%

D 63.03% 85.65% 66.33% 66.50% 3.47%

These results indicate that the cost of structure-constrain is

small. Therefore, besides making the dictionaries similar, the

SC2 algorithm can also produce good compression ratios.

VI. CONCLUSIONS

In this paper we investigated the reuse of a single hard-

ware building block layout to implement different dictionar-

ies in the microcode compression. This approach reduces

the cost and the design time of the decompression engine.

We also introduced the SC2 algorithm, a new structure-

constrained column clustering algorithm to improve the sim-

ilarity of the dictionaries when compressing the microcode.

The SC2 algorithm significantly reduces the area expansion

when reusing hardware building blocks to implement dif-

ferent dictionaries. Our experimental results show that the

SC2 algorithm is able to produce similar sized dictionaries

without compromising the microcode compression ratio.

REFERENCES

[1] Agrawala, A., and Rauscher, T. Microprogramming: Perspec-
tive and status. IEEE Transactions on Computers, C-23(8):817-
837, 1974.

[2] Araujo, G., Centoducatte, P., Cortes, M., and Pannain, R. Code
compression based on operand factorization. In Proceedings of
MICRO-31, p. 194-201, 1998.

[3] Beszdes, ., Ferenc, R., Gyimthy, T., Dolenc, A., and Karsisto,
K. Survey of code-size reduction methods. ACM Computing
Surveys, 35(3):223-267, 2003.

[4] Borin, E., Breternitz, M. J., Wu, Y., and Araujo, G. Clustering-
Based Microcode Compression. In ICCD’06. p. 189-196, 2006.

[5] Borin, E. Microcode Compression Algorithms (in portuguese).
PhD. Thesis, Unicamp, Brazil, 2007.

[6] Breternitz, M., Smith, R. Enhanced compression techniques to
simplify program decompression and execution. In Proceedings
of ICCD’97, p. 170-176, 1997.

[7] Dasgupta, S. The organization of microprogram stores. ACM
Computing Surveys, 11(1):39-65, 1979.

[8] Fisher, J. Trace scheduling: A technique for global microcode
compaction. IEEE Transactions on Computers, 30(7):478-490,
1981.

[9] Gunter, T., and Tredennick, H. Two-Level control store for
microprogrammed data processor. U.S. Patent n. 4,325,121,
1982.

[10] Hum, H., Breternitz, M., Wu, Y. and Kim, S. Compressing
microcode. U.S. Patent n. 7,095,342, 2006.

[11] Ishiura, N. and Yamaguchi, M. Instruction code compression
for application specific VLIW processors based on automatic
field partitioning. In the 7th Workshop on Synthesis and
System Integration of Mixed technologies. p. 105-109, 1997.

[12] Lefurgy, C., Bird, P., Chen, I.-C., and Mudge, T. Improving
code density using compression techniques. In Proceedings of
MICRO-30, p. 194-230, 1997.

[13] Lefurgy, C. Piccininni, E., Mudge, T. Evaluation of a high
performance code compression method. In Proceedings of
MICRO-32. p. 93-102, 1999.

[14] Leighton, T., Makedon, F. and Tragoudas, S. G. Approxima-
tion Algorithms for VLSI partition problems. In Proceedings
of ISCAS90. p. 2865-2868, 1990.

[15] Menzilcioglu, O. A case study in using two-level control
stores. In Proceedings of MICRO-20. p. 142-146, 1987.

[16] Schwartz, S. An algorithm for minimizing read only mem-
ories for machine control. In Conference Record of 1968 9th
Annual Symposium on Switching and Automata Theory. P.
28-33, 1968.

[17] Stritter, S., and Tredennick, N. Microprogrammed implemen-
tation of a single chip microprocessor. In MICRO-11. p. 8-16,
1978.

[18] Tredennick, H., and Gunter, T. Microprogrammed control
apparatus having a two-level control store for data processors.
U.S. Patent n. 4,307,445, 1981.

[19] Wilkes, M. The best way to design an automatic calculating
machine. In Manchester University Computer Inaugural Con-
ference. p. 16-18, 1951.

[20] Wolfe, A., and Chanin, A. Executing compressed programs
on an embedded RISC architecture. In SIGMICRO Newsletter,
23(1-2):81-91, 1992.

[21] Xie, Y., Wolf, W., and Lekatsas, H. Compression ratio and
decompression overhead tradeoffs in code compression for
VLIW architectures. In Proceedings of ASIC’01, p. 337-340,
2001.

[22] Zhao, W., and Papachristou, C. Architectural partitioning of
control memory for application specific programmable proces-
sors. In ICCAD’95. p. 521-26, 1995.

