
LAR-CC: Large Atomic Regions with Conditional

Commits

Edson Borin

Institute of Computing

University of Campinas1

Youfeng Wu

Programming Systems Lab.

Intel Labs

Mauricio Breternitz Jr.

Advanced Software and Analytics

Technology Group - AMD1

Cheng Wang

Programming Systems Lab.

Intel Labs

Abstract—HW/SW Co-designed systems rely on dynamic bi-
nary translation and optimizations for efficient execution of
binary code. Due to memory ordering properties and other
architectural constraints, most binary optimizations are applied
to regions of code that are atomically executed. To ensure that
the underlying hardware has enough speculative resources to
execute the whole atomic region, these systems typically form
short atomic regions, with only 20 to 30 instructions. However,
the shorter is the atomic region the smaller is the scope for
optimizations. We present LAR-CC, a novel technique that
enables HW/SW co-designed systems to optimize large atomic
regions and dynamically fit them into the available speculative
hardware resources by means of conditional commits. The LAR-
CC technique consists of two major components: 1) conditional
branch instructions to conditionally skip commit operations;
2) code transformations that replace commit operations by
conditional commits and enable optimizations to be applied on
the large atomic regions. Our experiments show that LAR-CC
can effectively achieve dynamic atomic region sizes larger than
1000 instructions, providing sufficiently large scope to apply
many advanced optimizations on HW/SW co-designed systems.

I. INTRODUCTION

HW/SW co-design is a promising approach to design power

efficient processors [1], [3], [11], [12], [18], [19], [20]. It

efficiently supports a source ISA, e.g., the popular X86, via

a runtime dynamic translation software that translates and

optimizes the source binary for execution on the native imple-

mentation ISA. This not only allows the processor designers to

design innovative new microarchitectures without concern for

backward compatibility, but also leverages powerful runtime

software, guided by dynamic runtime information, to optimize

the programs for significant performance improvement.

This design approach usually relies on specialized hard-

ware support to enable efficient execution of the translated

code. Self-modifying code detection [7], memory alias detec-

tion [11], indirect branch execution [10] and atomic execu-

tion [12] are examples of mechanisms that rely on hardware

support to enable the efficient execution of translated code.

Atomic execution, in particular, is an important mechanism

that allows the translator to perform aggressive speculative

optimizations, such as dead store elimination and scheduling,

without concern with infrequent corner cases, like exceptions

or memory ordering issues. The optimized code is specula-

tively executed inside an atomic region and, if any corner

cases happens, the system safely rolls back, discarding the

1Work done while at the Programming Systems Lab. - Intel Labs.

speculative computation, and executes a more conservative

version of the code (e.g., via interpretation).

Atomic execution typically employs hardware support to

buffer the data produced by the speculative execution until the

execution reaches the end of the region, when the speculative

state is committed and converted into architectural state. In this

way, the amount of code that can be executed atomically is a

function of the size of the speculative buffers and the translator

must be careful to ensure that the region of code optimized is

small enough to fit into the speculative buffers. However, as

we discuss below, building small regions of code may reduce

the optimizations scope, and consequently the optimization

opportunities. Therefore, the translator must build regions as

large as possible, to increase the optimization opportunities,

but small enough to fit into the speculative buffers.

Selecting the right atomic region size is a non-trivial task be-

cause it is hard to predict the amount of speculative resources

necessary to buffer the speculative data produced by a given

region. Notice that, the region code may contain a complex

control flow structure, including if-then-else statements and

loops, making it hard to predict the amount of speculative

data that may be produced during the execution. Moreover,

speculative buffers like speculative caches allow the re-use of

buffer entries by speculative data (e.g., multiple speculative

stores may write to the same cache line), making it hard

to predict how many entries will be required to hold the

speculative data. As we discuss in Section IV, even a state-

of-the-art HW/SW co-designed system, such as the Transmeta

Efficeon [12], employs conservative heuristics to limit the size

of the atomic regions, ensuring that the underlying hardware

can buffer the speculative data produced by the regions.

We propose a novel technique that allows the translator to

form and optimize large atomic regions by means of condi-

tional commits and dynamically expand the atomic region size

to fit into the available speculative hardware resources. As we

show in the experimental results, the Large Atomic Region

with Conditional Commit, or LAR-CC, effectively achieve

atomic region sizes larger than 1000 instructions.

The contributions of the paper can be summarized as

follows.

• We propose LAR-CC, a novel technique which enables

the optimization of large atomic regions of code and

dynamically selects the atomic region size to fit into the

speculative buffers.



• We propose a simple and effective heuristic to predict

when the conditional commits should commit the specu-

lative state.

• We demonstrate the potential of the LAR-CC technique

by implementing and evaluating it on a state-of-the-

art HW/SW co-designed infrastructure that models the

Transmeta Efficeon processor [12]. We show that the

dynamic atomic region size can be improved by 3X on

average, and achieves more than 1000 instructions for

loops that cover half of the loops execution.

The paper is organized as follows. Section II discusses

the code optimization scope on HW/SW co-designed systems

and the atomic region size limitation imposed by the atomic

execution hardware support. Section III describes the LAR-

CC technique and how it increases atomic regions sizes.

Section IV presents the experimental infrastructure and shows

the experimental results. Section V discusses the related work

and Section VI concludes the paper.

II. CODE OPTIMIZATION SCOPE ON HW/SW

CO-DESIGNED SYSTEMS

The key component of a high performing HW/SW co-

designed system is the binary translation module. It translates

the source binary to the implementation ISA, and optimizes the

code for the specific microarchitecture. The binary translation

usually operates in multiple phases, or gears, as described

by Dehnert et al. [7] and Borin et al. [3]. In the first

phase, the source binary is interpreted or quickly translated

with simple or no optimizations for native execution with

low compilation overhead. Most of the cold code is rarely

executed and will go only through the first phase of execution.

Once a region of code is identified as hot, or frequently

executed, the subsequent phases are initiated and the hot code

is re-translated. In these phases, the binary optimizer (BO)

performs more extensive optimizations on the region in the

hope that the frequent execution of the optimized code will

pay off the optimizations overhead and improve the overall

performance. As we discuss below, larger regions of code

unveil more optimization opportunities and can potentially

improve program performance significantly. Consequently, the

binary translation software may try to form larger regions of

code to enable more optimization opportunities and further

performance improvements.

A region can be loosely defined as a collection of instruc-

tions from the source ISA. Depending on the system, the

set of instructions in the same region may form a linear

trace [1], [18], [19], [20], a super-block, a hyperblock, a

directed acyclic control-flow graph (CFG) or even a generic

CFG, with loops and function calls [3], [7]. Typically, the

region defines the scope in which a HW/SW co-designed

system apply optimizations. In this sense, the larger the region

is the bigger the scope and the more optimization opportunities

exist.

In order to overcome the constraints imposed by the source

ISA architectural features, like the memory ordering model

and precise exception requirement, the HW/SW co-designed

systems usually rely on atomic execution support to safely

execute aggressively optimized regions of code. In this model,

the BO extensively optimizes the regions under some as-

sumptions and, if any of the assumptions are violated during

the execution of the optimized code, the system discards

the computed data and re-executes the region, using a less

aggressive version of the code or even interpretation. If none of

the assumptions are violated, the changes are committed to the

architectural state and the execution proceeds. Figure 1 shows

an example, where a simple region of x86 code is translated

and aggressively optimized under some assumptions. In this

example, the optimizer removed the first instruction of the

translated code because the third instruction performs a store

on the same address, which overwrites the data stored by

the first instruction. One of the assumptions here is that no

exceptions will occur between the execution of the first and

the third instructions. This assumption is important because

the x86 architecture implements precise exceptions and, in

case the second instruction (a load) raises an exception, the

data stored by the first instruction is required to be present

in the memory. In case the assumption is violated, i.e., when

an exception happens on the second instruction, the atomic

execution support allows the system to safely discard the data

computed by the region and re-execute a more conservative

version of the code.

mov 12(%edx), %ebx

st [r2+12] := r3
r0 := ld [r2+20]
st [r2+12] := r0

r0 := ld [r2+20]
st [r2+12] := r0

BT

BO

mov %eax, 20(%edx)
mov 12(%edx), %eax

st [r2+12] := r3

Translated code
(Native ISA)

Optimized code

(Source ISA)
X86 Region

Fig. 1. Region of x86 code translated and optimized.

In many HW/SW co-designed systems, the whole region is

executed atomically [1], [3], [18], [19], [20]. These systems

perform checkpoints and store the computed data on specula-

tive buffers until they are committed at the end of the region

execution or discarded at a rollback operation (e.g., due to

an exception). On the one hand, this approach simplifies the

optimizer, enabling it to optimize the whole region without

concern with memory order and exceptions, on the other hand,

it limits the maximum size of the region to the size of the

speculative buffers, since the whole region execution must be

stored in speculative buffers until the execution commits on

the region exit.

Some HW/SW co-designed systems, like Transmeta Ef-

ficeon [12] and Crusoe [11], use a more flexible approach,

which builds large regions of code and allows the execution to

commit from time to time, before leaving the region, allowing

the whole region execution to be larger than the size of the



speculative buffers. Figure 2 shows an example of a large

region that commits from time to time to avoid running out

of speculative resources. This region commits the speculative

state at every loop iteration to avoid executing too many

instructions between commits. Notice that the static size of the

region is small, just a few static instructions, but the dynamic

size may be very large, since the loop at block B2 may execute

thousands or even millions of iterations.

commit

r0 := 1B1

B2
r3 := ld [r2]
r4 := ld [r2+r0×4+8]
r5 := ld [r2+4]
r5 := f(r5,r3,r4)
st [r2+8] := r5
r0 := r0 + 1

· · ·B3

brc (r5<r1) B2

commit

Fig. 2. Large region with multiple commits to avoid running out of
speculative resources.

Since the region at Figure 2 performs multiple commits, it is

composed of multiple atomic segments. Block B1 is executed

atomically until the commit at block B2. Block B2 is executed

atomically until the commit at B2, and blocks B2 and B3

may also be executed atomically until the commit at B3. The

issue with this approach is that the commit at the loop header

requires the architectural state to be precise at that point, which

may inhibit some optimizations across loop iterations. Figure 3

shows an example where the code of Figure 2 is incorrectly

optimized across the commit. The optimizer performed loop

invariant code motion (LICM) by moving two load instructions

from the loop body (B2) to the pre-header (B1) and partial

dead store elimination (PDSE) by moving the store operation

from the loop body (B2) to block B3. Notice that the store

on address r2+8 is not executed inside the loop anymore and,

after the first iteration, the commit at the block B2 may not

generate a precise architectural state. This would violate the

very basic assumption that the architectural state is precise

at every commit. Another problem is the memory ordering

model. Notice that the LICM optimization modified the order

in which the loads are executed and, eventual modifications

on these memory locations by other cores may cause the

execution to be inconsistent with the architectural memory

model.

One could argue that the loop at block B2 could be unrolled

to increase the size of the atomic region, but this approach

still does not enable optimizations across loop iterations (like

software pipelining) and the costs associated with code ex-

pansion, such as increased pressure on the instruction cache

and increased optimization overhead, may hinder it’s benefits.

Furthermore, the unroll has to be conservative to make sure the

execution of the resulting loop body won’t run out of specula-

r5 := f(t5,r3,r4)

r0 := 1B1

· · ·

commit

B2

brc (r5<r1) B2
r0 := r0 + 1

r4 := ld [r2+r0×4+8]
commit

B3

r3 := ld [r2]
t5 := ld [r2+4]

st [r2+8] := r5

Fig. 3. Invalid optimizations across atomicity boundaries.

tive resources. In the next section we introduce the conditional

commit mechanism and show how it can aggressively enlarge

atomic regions and allow us to safely optimize loops across

iterations while keeping the atomic execution within the limit

of the speculative buffers.

III. LARGE ATOMIC REGIONS WITH CONDITIONAL

COMMITS

The large atomic regions with conditional commit (LAR-

CC) technique consists of two major components: 1) condi-

tional branch instructions to conditionally skip commit opera-

tions; 2) code transformations that replace commit operations

by conditional commits and enable optimizations to be applied

on larger atomic regions.

The first conditional branch instruction is called Branch To

Skip, or BTS for short, and performs in a similar fashion

as a regular conditional branch instruction. The BTS takes

a predicate and a target address as arguments and it branches

to the target address if two conditions are met:

1) The predicate is true; and

2) The system has enough speculative resources to continue

executing speculative code;

The key idea behind the BTS is that the target address

should be taken if the system has spare speculative buffer

entries to continue executing speculative computations without

performing a commit. Figure 4 shows an example where the

region of code is transformed to perform conditional commits.

The transformation applied is similar to strip-mining [23],

but in this case the commit operation is moved to the outer

loop and the test in the inner loop is performed by a BTS

instruction, instead of the regular conditional branch instruc-

tion (brc). During the execution, the BTS branch may be

taken many consecutive times, executing multiple iterations of

the inner loop without any commit. Whenever the predicate

is false or the system is about to run out of resources, the

BTS instruction falls through and the execution may either

take the path B2→B2brc→B3 (in case the predicate is false),

which will commit at B3 and exit the region, or the path

B2→B2brc→B2cmt, which will commit at B2cmt and continue

the execution at the inner loop B2. Notice that the resulting



inner loop became a large atomic region because it could

execute multiple iterations, potentially up to thousands of

instructions, without performing any commit operation.

B2brc

r0 := 1B1

B3
commit
· · ·

r0 := 1B1

B2 commit
· · ·

brc (r5<r1) B2

(a) (b)

B2
· · ·

bts (r5<r1) B2

commit

B3
commit
· · ·

B2cmt

brc (r5<r1) B2cmt

Fig. 4. Region of code before (a) and after (b) the conditional commit
transformation.

The BTS instruction must be able to predict if the system

will have enough speculative resources to skip the commit and

execute the next loop iteration successfully. If the prediction

is incorrect, the system may run out of speculative resources.

In this case, the system can still safely proceed by rolling

the state back to the last commit point executed and re-

executing the region using a more conservative code, e.g.,

using interpretation or even the same code with a more

conservative skip prediction mechanism. Even though the

system is able to continue, this scenario may be very costly

because the rollback operation may discard a large amount

of speculative work, increasing the energy consumption and

affecting the performance. Therefore, it is imperative that

the skip prediction mechanism be intelligent enough to avoid

running out of speculative resources. In Section IV we propose

and evaluate an effective skip prediction mechanism.

A. Conditional Commit Transformations

We propose two code transformations to take advantage

of conditional commits. The first one is specific for loops

and, as we showed in Figure 4, is able to remove commit

operations from the loop body, enabling optimizations across

loop iterations. The second one is more generic and can be

used on any commit operation.

Algorithm 1 shows the conditional commit transformation

for loops with commit operations on the loop header. Lines 1

to 3 create the outer loop header block and transfer the

commit operation to it. Lines 4 to 7 move the original loop’s

input edges to the outer loop. The remaining of the algorithm

processes the back edges source blocks, called loop tails. In

this step, each loop tail is split into two blocks, LTAIL and

LTAILbrc (e.g., B2 and B2brc on Figure 4). The LTAIL
will contain a BTS branch, enabling the code to directly

branch to the inner loop header and skip the commit operation.

The LTAILbrc will contain the regular conditional branch

allowing the execution to either leave the loop by falling

through or continue by branching back to the outer loop header

and committing.

Algorithm 1: Conditional Commit Transformation for

Loops

Input: Loop Header Block (LH), Back Edges Set
Output: Transformed Loop

1 Create the outer loop header block: LHcmt

2 Create an edge from LHcmt to LH
3 Move the commit operation from LH to LHcmt

4 foreach edge E targeting LH /∈ Back Edges Set do

5 PreHeader ← E.source
6 Remove E
7 Create a new edge (PreHeader, LHcmt)

8 foreach edge E ∈ Back Edges Set do

9 Let LTAIL be the block E.source, and BRC(p) be

the branch at LTAIL with predicate p
10 Create a new block LTAILbrc

11 Copy BRC(p) from LTAIL to LTAILbrc

12 Change the BRC(p) at LTAIL into a BTS(p)
13 Create an edge from LTAILbrc to LTAIL
14 Let FT E be the fall-through edge of LTAIL
15 Change FT E.source to LTAILbrc

16 Create a back edge from LTAILbrc to LHcmt

For simplicity, the presented algorithm assumes that the

back edges are the branch taken paths. For back edges that

correspond to fall-through paths, we may either transform

them by inverting the predicate of the branch or by using the

second conditional commit instruction: the Branch To Commit

(BTC). The BTC instruction is similar to the BTS, but in

this case, it branches if the system does not have enough

speculative resources to continue executing speculative code.

Figure 5 (a) shows the region of Figure 2 after the conditional

commit transformation and Figure 5 (b) shows the resulting

code after LICM and PDSE optimizations. Notice that, in this

case, the optimizer was able to move code out of the inner

loop without crossing any atomicity boundaries.

The generic conditional commit transformation can be ap-

plied to other commit operations and is depicted in Figure 6.

In this transformation, a basic block B1 containing a commit

operation is first split in two blocks: B1’ and B1” as shown

in Figure 6 (b). B1’ contains all the instructions before the

commit and the commit operation and B1” contains all the

instructions after the commit. Finally, a new block (B1cmt)

with a commit operation is created and the original commit,

at B1’, is replaced by a Branch To Commit (BTC) operation

as shown in Figure 6 (c). The new code will fall through

and skip the execution of B1cmt if the system has enough

speculative resources to continue the speculative execution,

otherwise, the target of the BTC instruction will be taken and

the speculative state will be committed at B1cmt. Since the



B2

r0 := 1B1

commitB2cmt

brc (r5<r1) B2cmt

B3

(b)

r0 := 1

commitB2cmt

B2 r3 := ld [r2]
r4 := ld [r2+r0×4+8]
r5 := ld [r2+4]
r5 := f(r5,r3,r4)
st [r2+8] := r5

bts (r5<r1) B2
r0 := r0 + 1

B2brc brc (r5<r1) B2cmt

· · ·

commit
B3

(a)

B1

r3 := ld [r2]

r4 := ld [r2+r0×4+8]

st [r2+8] := r5

· · ·

commit

r0 := r0 + 1
bts (r5<r1) B2

B2brc

t5 := ld [r2+4]

r5 := f(t5,r3,r4)

Fig. 5. Region after the conditional commit transformation (a) and after
LICM and PDSE optimizations (b).

transformation is straightforward, we omit the pseudo-code

for this transformation.

(a)

B1 · · ·

commit
· · ·

B1’ · · ·

commit

· · ·B1”

B1’ · · ·

B1” · · ·

btc B1cmt

B1cmt commit

(c)(b)

Fig. 6. Generic conditional commit transformation. (a) Original block; (b)
Block split at commit; (c) Commit replaced by conditional commit (BTC).

Figure 7 shows an example where the generic conditional

commit transformation enables new optimizations. In this

example, the store performed at block B1 is killed by the store

at B3. However, the store at B1 cannot be removed because it

is alive at the commit in B2, which requires the architectural

state to be precise. The store at B1 becomes partially dead

after the conditional commit transformation (it is dead at path

B1→B2→B3), and can be optimized as in Figure 7 (c).

Next section presents the infrastructure used, the skip pre-

diction mechanism and the experimental results.

IV. EXPERIMENTAL RESULTS

In this section we describe the experimental infrastructure

and the results achieved with the LAR-CC technique. We

first introduce the experimental framework and show the

potentials for atomic region execution using an perfect skip

predictor. Finally, we propose and evaluate a heuristic to

predict conditional commits.

We implemented the LAR-CC technique on top of an

infrastructure that models the Transmeta Efficeon [12], a state-

of-the-art HW/SW co-designed system that executes x86 code

(b)

B1

· · ·B2

B3 st[r1] := 1
· · ·

(c)

· · ·

btc B2cmt

st[r1] := 0
commit

B2cmt

B1

· · ·

· · ·

commit

· · ·

st[r1] := 0

st[r1] := 1

B2

B3

(a)

commitB2cmt

B1 st[r1] := 0
· · ·

btc B2cmt

· · ·B2

B3 st[r1] := 1
· · ·

Fig. 7. (a) Original code; (b) conditional commit transformation; (c) code
after partial dead store elimination.

on top of a VLIW instruction set via software emulation. The

Efficeon hardware consists of an in-order VLIW processor

capable of executing up to seven operations per cycle. The

hardware also contains special support to accelerate the exe-

cution of dynamically generated code. The special hardware

support includes mechanisms for efficient atomic execution,

like fast register checkpoints and memory buffering via a

shadow register file and a speculative cache, and primitives for

dynamic memory alias detection, which enables aggressive op-

timizations on memory operations, like dead store elimination

and instruction scheduling.

The Efficeon software, called Transmeta Code Morphing

System [7], [16], or CMS for short, is a runtime system

that executes on top of the Efficeon processor and is able

to provide high-performance execution of x86 binaries via

interpretation and dynamic binary translation. Whenever the

system is started, CMS is loaded and initialized. After this, the

CMS interpreter starts executing and profiling x86 instructions

from the x86 boot sequence. If an x86 instruction is frequently

executed, the CMS compiler (a.k.a. translator) selects a region

of x86 code, starting at the frequently executed instruction,

translates the x86 code and optimize it for native execution

on the Efficeon processor. The translated code is executed

until the control flow reaches x86 code that has not been

translated yet. In this case, the CMS interpreter takes over

and the execution via interpretation continues until a new x86

instruction becomes frequently executed and a new region is

translated, or until the execution reaches x86 code that is al-

ready translated, in which case the execution is switched back

to translated code. The CMS also monitors the execution of

translated code and re-translates the code with more aggressive

optimizations if the code turns out to be very hot. In fact, the

CMS employs a four gears (stages) execution mechanism [12]:

in the first gear the cold code is executed via interpretation.

Whenever the code becomes frequently executed, the second

gear takes place and the CMS translates and optimizes the

code using light optimizations to minimize compilation time.

Gear 3 starts when a translated code becomes very hot. In this



case, the CMS compiler re-compiles the same region of code

applying aggressive optimizations. Gear 4 starts when the code

becomes even hotter. This last gear is characterized by even

more aggressive optimizations and the eventual combination

of multiple regions into a single larger region, increasing the

optimization scope. We refer the reader to previous work [7],

[11], [12], [16] for details on the CMS translator and the

gearing system.

The Efficeon hardware includes a shadow register file that

is used for creating register checkpoints quickly. Whenever a

commit operation is executed, the speculative register state,

stored at the regular register file, is copied into the shadow

register file. If a rollback operation is executed, the state

is copied from the shadow register file back to the regular

register file, recovering the state saved at the last commit

operation. Different from the registers approach, the memory

contents are not entirely saved at commits. Instead, the results

of memory operations are tagged as speculative and buffered

at the speculative cache during execution. When a commit

operation is executed all the speculative data buffered is turned

into non-speculative by a mechanism that efficiently clears all

the speculative tags in one cycle. In case a rollback operation

is performed, the data tagged as speculative is tagged as invalid

and discarded.

The register checkpoint mechanism does not impose any

limitations on the number of instructions executed by an

atomic region. Notice that a checkpoint is saved at the begin-

ning of an atomic region and it does not grow with the execu-

tions of more instructions. The speculative memory buffering

mechanism, on the contrary, may run out of resources during

the execution. The speculative updates are buffered in a 64 KB,

8-way, 32B line speculative L1 data cache together with a 1

KB, fully-associative, 32B line victim cache. Entries evicted

from the data cache are buffered by the victim cache and later

drained to the second level cache (L2), however, speculative

data is not allowed to be drained from the victim cache into

the L2 cache. Therefore, whenever the victim cache becomes

full with speculative data, the system must roll back.

The regions selected by the CMS translator are generic

CFG, with loops and function calls. The translator converts

a region of x86 code into an intermediate representation

(IR) and introduces commit operations at selected points to

prevent rollbacks caused by lack of speculative resources. For

example, the translator inserts commit operations in the middle

of regions that contain too many static instructions and at loop

headers, ensuring that loops will not execute multiple iterations

without committing the speculative state.

The great majority of commits in middle of the translations

in our experiments were introduced on loop headers. As

discussed before, the commits at the loop headers may prevent

the system from running out of resources, but they limit the

size of atomic regions and limit optimizations across loop

iterations. Therefore, we focus our analysis on conditional

commit transformations for loops.

We implemented the LAR-CC loop transformation into the

CMS translator and added the BTS and BTC instructions

into an Efficeon simulator. We used a pre-release version of

CMS (CMS 7.0) and a functional simulator that models the

speculative L1 data cache and the victim cache. We simulate

230 traces extracted from 23 SPEC CPU 2000 benchmarks.

Each trace is executed in two phases. The first phase executes

1 billion x86 instructions to warm-up the translation code

cache and the speculative data cache, while the second phase

executes 100 million x86 instructions to collect the statistics.

We evaluate the impact that commit operations have on the

size of atomic regions using two metrics:

• Average atomic loop size: the number of x86 instructions

executed by loops divided by the number of commit

operations executed by loops. If the execution commits

once at every loop iteration, this metric is equivalent to

the average dynamic loop body size.

• Average dynamic loop size: the number of x86 instruc-

tions executed by loops divided by the number of times

the execution entered loops. Assuming the system always

commit before entering (or leaving) a loop, this number

provides an upper bound for average atomic loop sizes.

The LAR-CC technique enables the execution to skip com-

mits at some of the loop iterations and increases the average

atomic loop size. The average dynamic loop size would be

equivalent to the average atomic loop size if the execution

is able to skip all the commits executed after the loop back

edges.

Figure 8 shows the dynamic loop size and the atomic loop

sizes with and without commit skips plotted against loop

coverage for loops in the Spec 2000 applications. For the skip

data we used a perfect skip predictor that is able to precisely

predict if the system will run out of resources in the next

iteration, always making the correct skip/commit prediction.

On average, the loops compiled by CMS cover 52% of the

execution and have an average atomic loop size (without skips)

of 26.4 x86 instructions. The LAR-CC mechanism is able to

bring the average atomic loop size up to 79 x86 instructions,

which is very close to the dynamic loop size and 3 times

larger than the original size. The curves at Figure 8 show

that, even if we select only a few of the largest loops (at

around 3% of execution coverage), the average atomic loop

size without skips is still limited to 166 instructions. With the

same coverage, the conditional commit mechanism is able to

achieve an average atomic loop size of 28K instructions, while

the average dynamic loop size is above 456K instructions.

If we select enough loops to cover 30% of the execution

(covering more than half of the hot loops execution), the

average atomic loop size with conditional commit is above

1K instructions, significantly better than the original average

atomic loop size of 60 instructions. Clearly, the 64KB

speculative cache is capable of accommodating large atomic

region sizes, exceeding thousands of instructions.

Figure 8 also shows that there are two classes of loops: loops

with large trip counts, which can benefit from conditional com-

mit to increase atomic size significantly, and loops with short

trip counts, which could execute all the loop iterations without

any commit. To achieve the large atomic loop sizes in the first



 10

 100

 1000

 10000

 100000

 1e+06

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

A
v

g
er

ag
e 

A
to

m
ic

 L
o

o
p

 S
iz

e

Execution Coverage

Dynamic Loop Sizes
Atomic Loop Sizes - Perfect Prediction

Atomic Loop Sizes - Without Skips

Fig. 8. Dynamic loop size and atomic loop sizes for Spec 2000 benchmarks.

class of loops we need a good skip prediction mechanism to

prevent the system from running out of resources, as there is

a big gap between the atomic loop size and the dynamic loop

size in these loops.

In the next section we propose a skip prediction mechanism

and evaluate it using our infrastructure.

A. Skip Prediction Mechanism

As described before, the BTS and BTC instructions must

predict if the system will have enough speculative resources to

skip the current commit and continue executing until the next

commit operation. A good skip prediction technique needs to

have the following two pieces of knowledge: 1) how much

speculative resources available the hardware still has, and 2)

how much speculative resources the execution may need until

the next conditional commit instruction.

The Transmeta Efficeon system initially stores the data pro-

duced by speculative memory operations on the L1 speculative

data cache. Both speculative and non-speculative cache lines

evicted from the speculative data cache are moved to the

victim cache (VC). Non-speculative cache lines may later be

drained from the VC to the L2 cache. However, the system

cannot drain speculative data to the L2 cache, therefore, the

VC accumulates speculative cache lines evicted from the L1

data cache until the execution commits or rolls back. In

our experiments we observed that whenever the data cache

becomes saturated with too much speculative data, it starts

evicting speculative data to the victim cache. Since the victim

cache is not allowed to drain the speculative data to the second

level cache, it quickly fills up with speculative data. Intuitively,

a high amount of speculative data in the victim cache is a

good indication that the system is running out of speculative

resources. Based on this insight, we implemented a simple

heuristic that monitors the victim cache usage. The heuristic,

called VC Delta, is executed at every conditional commit

branch and computes a growth rate (delta) by subtracting the

current amount of speculative entries at the VC by the amount

of speculative entries seen when the previous conditional

commit instruction was executed. The delta is added to the

current VC speculative usage to estimate the VC usage at

the next conditional commit instruction. If the estimated VC

usage is bigger than a given threshold (16 in our experiments),

the current conditional commit branch takes the commit path,

otherwise, it takes the skip path.

Figure 9 shows the average atomic loop sizes when using

the proposed VC Delta skip predictor and the perfect skip

predictor. Notice that, the average atomic loop size achieved

by the VC Delta predictor is very similar to the one achieved

by the perfect skip predictor.

 10

 100

 1000

 10000

 100000

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

A
v

g
er

ag
e 

A
to

m
ic

 L
o

o
p

 S
iz

e

Execution Coverage

Perfect Prediction
VC Delta Prediction

Fig. 9. Average atomic loop sizes with perfect prediction and VC Delta skip
prediction.

CMS has a mechanism that re-compiles regions that roll

back twice due to lack of speculative resources. To avoid future

rollbacks on the same loops, we do not apply the conditional

commit to regions that are re-compiled due to aggressive skip

prediction. The overall loop execution coverage when using

the VC Delta heuristic is slightly smaller than the perfect

prediction because the data does not include the loops from

regions that were re-compiled without conditional commit.

The small reduction of loop coverage on the graphic also

indicates that only loops with low coverage were discarded

due to re-compilation.

The overhead caused by a rollback is twofold: 1) the

cost of rolling the state back to the previous checkpoint,

including eventual re-compilations and bookkeeping, and 2)

the time/energy spent on the speculative computation being

discarded. The amounts of rollbacks measured in our experi-

ments with and without the conditional commit technique are

very similar. However, we noticed a larger amount of work dis-

carded on rollbacks when using the conditional commit tech-

nique. As expected, the larger the atomic region, the larger the

amount of speculative work discarded on eventual rollbacks.

In our experiments, most of the rollbacks happened before the

atomic region grew large. However, some rollbacks caused by

x86 interruptions happened when the executing atomic region



was already very large, causing lots of speculative work to be

discarded due to the rollback. To fix this problem, we created a

mechanism that delays handling the interruption until the next

commit, and forces the conditional commit instructions to take

the commit path whenever an interruption is pending. Since

the number of instructions between two conditional commits

is small, this mechanism won’t delay interrupts for long. The

mechanism is only used on regions with conditional commits

and is triggered by a conditional commit instruction.

Figure 10 shows the amount of speculative work discarded

per rollback cause when executing without the conditional

commit, with the perfect prediction and with the VC Delta

heuristic. Despite the differences, all the techniques discard a

very small amount of speculative work. The perfect prediction

approach discards the equivalent of 0.0025% of the total work

committed during the benchmarks execution, while the VC

Delta heuristic discards 0.0054% and the execution without

conditional commit discards 0.0078%.

Fig. 10. Amount of work discarded per rollback cause.

The amount of work discarded due to the lack of spec-

ulative resources (Spec. Limit) when executing without the

conditional commit is very small because the CMS translator

usually produces small atomic regions. The perfect prediction

approach also discards little work because it is always able

to predict when the system will run out of resources and

commit the execution of large regions. The VC Delta, on

the contrary, discarded more speculative work because the

heuristic was not able to predict that the system would run

out of speculative resources on regions. The perfect prediction

and the VC Delta heuristic approaches discarded less work

on x86 interruptions due to the mechanism that delays x86

interruptions (the mechanism is not used on the experiments

without the conditional commit).

Figure 10 also shows that there is a small increase in

the amount of work discarded due to other causes (Other)

when executing with the VC Delta heuristic. This happens

because the atomic regions are larger, causing more work to

be discarded on the rollbacks. The perfect prediction approach

is able to predict all the rollbacks, including rollbacks not

related to the lack of speculative resources, therefore, it does

not increase the amount of work discarded due to the other

causes.

V. RELATED WORK

Many HW/SW co-designed systems have leveraged atomic

execution to support speculative optimizations. PARROT [1],

[19] and rePLay [18], [20] use atomic hardware support to

execute optimized traces of code. However, these systems use

internal pipeline buffers to hold the speculative data and the

optimization scope is constrained to simple traces, without

conditional if-then-else or loop constructs.

Transmeta Crusoe [11] employed a register checkpoint

mechanism and a gated store buffer to store the speculative

data. The gated store buffer is very limited in size and does

not allow the execution of large atomic regions. Transmeta

Efficeon [12], the successor of Crusoe, included a 64KB L1

speculative data cache and a 32 entry victim cache, capable

of holding a larger amount of speculative data. Even with

the larger cache, the translator conservatively inserted commit

operations in the middle of the region (e.g., loop headers) to

prevent the execution from running out of resources, reducing

the size of the atomic regions.

In TAO [3], the authors proposed a technique that uses

two-level atomicity support to enable optimizations on larger

regions of code. The proposed technique is similar to LAR-

CC in the sense that it allows the speculative optimization

and execution of large atomic regions. However, instead of

predicting if the system will run out of resources, the TAO

system performs speculative checkpoints for each loop itera-

tion and executes until it runs out of resources. Whenever the

system runs out of resources, the execution performs a short

rollback to the last speculative checkpoint (e.g., discarding the

data produced by the last loop iteration) and commits the state.

LAR-CC prevents the overhead caused by these short rollbacks

by predicting if the system will run out of resources. Moreover,

LAR-CC is simpler and does not require a Two-level atomicity

hardware support.

Neelakantam et al. [16] explored the atomic execution

mechanism to transform atomic regions by removing infre-

quent side-exits. The transformation does not increase the

atomic region size, but it is able to unveil more optimization

opportunities and it achieves an average of 3% performance

improvement on a real Transmeta Efficeon [12] system. The

transformation did not require any new hardware support,

which enabled the authors to implement and measure the

technique on a real system.

Atomic execution was also explored at high level languages

to improve performance. Chen et al. [6] proposed atomicity

support in the static compiler to optimize and parallelize

C/C++ program aggressively. Neelakantam et al. also used

hardware atomicity support to optimize Java programs in a

JVM [17] and reported 10-15% average speedup.

User level dynamic binary translators and optimizers,

such as IA32-EL [2], StarDBT [22], HDTrans [21], Dy-

namoRIO [4], and Pin [14], optimize and execute user level



binaries from a source ISA on a target ISA. To the best of our

knowledge these systems do not leverage atomic execution and

cannot perform aggressive optimizations.

Thread-level speculations (TLS) relies on atomic execution

for automatic code parallelization [5], [8], [13], [15]. TLS

speculatively runs potentially conflicting regions of code in

parallel. Whenever a dependency violation is detected at run-

time, the conflicting threads are rolled back to the beginning

of the region using the hardware atomicity support.

Transactional memories (TM) [9] also rely on atomicity

hardware support for efficient execution of transactions. In

order to use the atomicity hardware support, the amount of

speculative data produced by the transaction must be small

enough to fit into the speculative buffers. However, normal

transactions cannot be committed in the middle in case the

system is about to run out of speculative resources. Closed

nested transaction may commit inner transactions, but the inner

transaction boundary is specified by users, independent of

hardware resources, and not managed by runtime. Because

of atomicity feature, a transactional memory can also be

leveraged to support atomic optimizations [17].

VI. CONCLUSIONS

Many HW/SW co-designed systems rely on atomicity sup-

port to speculatively execute aggressively optimized regions of

code [1], [3], [11], [12], [18], [19], [20]. During the execution,

the system stores the speculative data in speculative buffers.

If the region produces too much speculative data and the

system does not have enough speculative buffers to hold the

data, the execution is rolled back, discarding the speculative

data produced, and the system proceeds by executing a more

conservative version of the code (e.g., by using interpretation).

In many cases it is hard to predict the amount of speculative

resources needed by a region of code and, in order to ensure

that regions will be able to execute to completion without

running out of speculative resources, typical systems limit

the size of the code inside the atomic regions. This practice

effectively reduces the occurrence of rollbacks due to lack

of speculative resources, however, the reduced code size also

reduces the scope for optimizations. In this work, we pro-

posed the Large Atomic Region with Conditional Commit, or

LAR-CC, a novel technique that allows HW/SW co-designed

systems to form and optimize large atomic regions by means

of conditional commits that can be dynamically adjusted to fit

into the available speculative hardware resources.

We implement LAR-CC inside a state-of-the-art HW/SW

co-designed system and showed that it can increase the atomic

region size significantly. For example, it enlarges the atomic

loop size by 3̃X over the original size, and effectively achieves

atomic region sizes larger than 1000 instructions for loops that

cover half of the loop execution.

This work can be expanded in many ways. We experimented

with LAR-CC in a system that uses a speculative data cache

and a victim cache to hold speculative data. In the future,

we may try the LAR-CC technique with different cache

configurations and with other mechanisms of speculation.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

valuable comments and discussions. We also appreciate the

support provided by Ali-Reza Adl-Tabatabai at the Program-

ming System Laboratory at Intel and by the Computer Systems

Laboratory at the University of Campinas.

REFERENCES

[1] Almog, Y., Rosner, R., Schwartz, N., and Schmorak, A. Specialized Dy-
namic Optimizations for High-Performance Energy-Efficient Microarchi-
tecture. In Proceedings of the international symposium on code generation
and optimization (CGO’04), Palo Alto, CA, 2004.

[2] Baraz, L., Devor, T., Etzion, O., Goldenberg, S., Skalesky, A., Wang, and
Y., Zemach, Y. IA-32 Execution Layer: A Two Phase Dynamic Translator
Designed to Support IA-32 Applications on Itanium-based Systems. In
Proceedings of the 36th international symposium on microarchitecture
(MICRO’03). San Diego, CA, 2003.

[3] Borin, E., Wu, Y., Wang, C. Liu, W., Breternitz Jr., M., Hu, S., Natanzon,
E., Rotem, S., and Rosner, R. TAO: Two-level Atomicity for Dynamic
Binary Optimizations. In Proceedings of the international symposium on
code generation and optimization (CGO’10), Toronto, Canada, 2010.

[4] Bruening, D. L. Efficient, Transparent, and Comprehensive Runtime Code
Manipulation. Ph.D thesis, Massachusetts Institute of Technology, 2004.

[5] Chen, M. K. and Olukotun, K. The Jrpm System for Dynamically Par-
allelizing Java Programs. In Proceedings of the 30th annual international
symposium on computer architecture (ISCA’03). San Diego, CA, 2003.

[6] Chen, L-L. and Wu, Y. Aggressive Compiler Optimization and Paral-
lelization with Thread-Level Speculation. In Proceedings of international
conference on parallel processing (ICPP’03). Kaohsiung, Taiwan, 2003.

[7] Dehnert, J. C, Grant, B., Banning, J. P., Johnson, R., Kistler, T, Klaiber,
A., and Mattson, J. The Transmeta Code Morphing Software: Using
Speculation, Recovery, and Adaptive Retranslation to Address Real-
Life Challenges. In Proceedings of the international symposium on code
generation and optimization (CGO’03). San Francisco, CA, 2003.

[8] Du, Z.-H., Lim, C.-C., Li, X.-F., Yang, C., Zhao, Q., and Ngai, T.-F.
A cost-driven compilation framework for speculative parallelization of
sequential programs. In Proceedings of the ACM SIGPLAN 2004 con-
ference on programming language design and implementation (PLDI’04).
Washington, DC, 2004.

[9] Herlihy, M., and Moss, J. E. B. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th annual
international symposium on computer architecture (ISCA ’93). New York,
NY, 1993.

[10] Kim, H-S. and Smith, J. Hardware Support for Control Transfers in
Code Caches. In proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’03). Washington, DC, 2003.

[11] Klaiber, A. The Technology Behind Crusoe Processors. Transmeta white
Paper, Jan. 2000.
http://www.charmed.com/PDF/CrusoeTechnologyWhitePaper 1-19-00.pdf

[12] Krewell, K. Transmeta Gets More Efficeon. Microprocessor report. v.17,
October, 2003

[13] Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., and Torrellas,
J. POSH: a TLS compiler that exploits program structure. In Proceedings
of the 11th ACM SIGPLAN symposium on Principles and practice of
parallel programming (PPOPP’06). New York, NY, 2006.

[14] Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney G., Wallace,
S., Reddi, V., and Hazelwood K. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In Proceedings of the
2005 ACM SIGPLAN conference on programming language design and
implementation (PLDI’05). New York, NY, 2005.

[15] Luo, Y., Packirisamy, V., Hsu, W.-C., Zhai, A., Mungre, N., and Tarkas,
A. Dynamic performance tuning for speculative threads. In Proceedings
of the 36th annual international symposium on computer architecture
(ISCA’09). Austin, TX, 2009.

[16] Neelakantam, N., Ditzel, D., and Zilles, C. A real system evaluation
of hardware atomicity for software speculation. In Proceedings of the
15th international conference on architectural support for programming
languages and operating systems (ASPLOS’10). Pittsburgh, PA, USA.

[17] Neelakantam, N., Rajwar, R., Srinivas, S., Srinivasan, U., and Zilles, C.
B. Hardware atomicity for reliable software speculation. In Proceedings
of the 34th annual international symposium on computer architecture
(ISCA’07). San Diego, CA, 2007.



[18] Patel, S. J. and Lumetta, S. S. rePLay: A Hardware Framework for
Dynamic Optimization. IEEE Transactions on Computers.50, 6 (Jun.
2001), 590-608.

[19] Rosner, R., Almog, Y., Moffie, M., Schwartz, N., and Mendelson, A.
Power Awareness through Selective Dynamically Optimized Frames. In
Proceedings of the 31st annual international symposium on computer
architecture (ISCA’04). Mnchen, Germany, 2004.

[20] Slechta, B., Crowe, D., Fahs, B., Fertig, M., Muthler, G., Quek, J.,
Spadini, F., Patel, S. J., and Lumetta, S. S. Dynamic Optimization of
Micro-Operations. In Proceedings of the 9th international symposium on
high-performance computer Architecture (HPCA’03), Washington, DC,
2003.

[21] Sridhar, S., Shapiro, J. S., Northup, E., and Bungale, P. HDTrans: An
Open Source, Low-Level Dynamic Instrumentation System. In Proceed-
ings of the 2nd international conference on virtual execution environments
(VEE’06), Ottawa, Canada, 2006.

[22] Wang, C., Hu, S., Kim, H-S., Nair, S. R., Breternitz Jr., M., Ying,
Z., and Wu, Y. StarDBT: An Efficient Multi-platform Dynamic Binary
Translation System. In Proceedings of Asia-pacific computer systems
architecture conference, 2007.

[23] Wolfe, M. More iteration space tiling. In Proceedings of the Supercom-
puting 89, New York, NY, 1989.


