
Software-Based Transparent and Comprehensive Control-Flow Error Detection

Edson Borin‡† Cheng Wang† Youfeng Wu† Guido Araujo‡
‡ IC-UNICAMP - Brazil †PSL-Intel Corporation – USA

{borin,guido}@ic.unicamp.br, {cheng.wang,youfeng.wu}@intel.com

Abstract

Shrinking microprocessor feature size and growing
transistor density may increase the soft-error rates to
unacceptable levels in the near future. While reliable
systems typically employ hardware techniques to
address soft-errors, software-based techniques can
provide a less expensive and more flexible alternative.
This paper presents a control-flow error classification
and proposes two new software-based comprehensive
control-flow error detection techniques. The new
techniques are better than the previous ones in the
sense that they detect errors in all the branch-error
categories. We implemented the techniques in our
dynamic binary translator so that the techniques can
be applied to existing x86 binaries transparently. We
compared our new techniques with the previous ones
and we show that our methods cover more errors while
has similar performance overhead.

1. Introduction

Transient faults, also called soft-errors or single-
event upsets (SEUs), are intermittent faults that do not
occur consistently. Generally, these faults are caused
by external events such as neutron and alpha particles
striking the chip or power supply and interconnect
noise [5]. Although these faults do not cause
permanent damage, it may result in incorrect program
execution by altering signal transfers or stored values.

High-availability systems and safety-critical
applications, such as spacecraft, airplanes and
automotive control, are very sensitive to errors. Faulty
behavior in these systems may lead to injury or
damage to property. Therefore they must be reliable,
and are generally designed to tolerate faults. Although
soft-errors have been mainly addressed in this domain,
new trends in general purpose microprocessor
manufacturing have pushed these faults under the spot
light.

Transistors are becoming increasingly smaller,
faster, and with tighter noise margins, which make

processors more susceptible to soft-errors [14]. In fact,
soft-errors are already changing the way industry looks
at processor design. Sun Microsystems lost a major
customer to IBM due to server crashes caused by soft-
errors [3]; and the fear of cosmic ray strikes led Fujitsu
to use some form of error detection [2] to protect 80
percent of the 200,000 latches in its recent Sparc
processor.

Most modern microprocessors already incorporate
certain mechanisms for detecting soft-errors. Memory
elements, particularly caches, are protected by
mechanisms such as error-correcting codes (ECC) and
parity. The protection is typically focused on memory
because the techniques are well understood and do not
require expensive extra circuitry. Moreover, caches
take up a large part of the chip area in modern
microprocessors.

Recent studies [14] show that in the near future the
soft-error rate in combinational logic will be
comparable to that of memory elements, and protecting
the entire chip, instead of only the memory elements,
will be in the top of the designers to do list.

Several works have investigated redundancy
techniques to provide soft-errors reliability in
combinational logic [9, 10, and 15]. Hardware based
approaches generally rely on inserting redundant
hardware such as duplicating functional units or even
the entire processor. As an alternative to hardware
approaches, software-based techniques change only the
software, and the reliability comes free of cost (except
for the performance loss). Moreover, the software-only
approach can be applied to off-the-shelf processors.

In software-based techniques, the reliability is
generally achieved by combining data-flow and
control-flow checking techniques. Data-flow checking
techniques rely on redundant computation by
replicating instructions. On the other hand, control-
flow checking is usually performed by comparing a
run-time signature with a pre-computed one.

This paper focus on control-flow checking to detect
a special class of errors called control-flow errors,
which occur when a processor jumps to an incorrect

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

next instruction due to a soft-error. We propose a
control-flow error classification and two software-
based comprehensive control-flow checking
techniques that can detect all the errors in the
classification. We also discuss variations of the
techniques, which trade off performance and delay to
report the fault. The techniques are implemented in our
dynamic binary translator, which innovate by allowing
legacy code to make transparent use of software-based
reliability techniques.

Section 2 depicts the control-flow error
classification. Section 3 describes related works and
the new control-flow checking techniques. Section 4
formalizes the control flow checking problem and
provides a formal proof that our control flow checking
techniques can detect any single control-flow error.
Section 5 presents the dynamic binary translator and
the implementation of the control-flow checking
techniques. Section 6 shows the experimental results,
and Section 7 concludes the paper.

2. Control-Flow Errors

A control-flow error is a deviation from the
program’s normal instruction execution flow. This
error can be a result of a fault in the target address,
branch flags, or even a change in the instruction
pointer (IP) register due to external interference [11].
We classify the control-flow errors into two main
categories:

Branch-error: when the error occurs in a branch
instruction (mistaken branch, or branch to a
random address, due to an error in the branch flag
or in the target address). Although the error occurs
at the branch instruction, it could be caused by
instructions executed earlier than the branch
instruction, such as instructions that generate the
flags which affect the branch instruction.
Non-branch-error: when the error occurs in a non-
branch instruction due to a change in the
instruction behavior or in the IP register.

Some non-branch-errors are very hard to cover with
software-based control-flow reliability techniques. For
example, take the instruction: a=a+c. If after executing
this instruction the IP points to the same instruction
and executes it again, the fault generates an error.
Data-flow check techniques can detect this error by
comparing the value of “a” with a redundantly
computed value, but we cannot detect it by checking
only the control-flow. Therefore, we will assume that
these errors can be detected by data-flow checking or
other means, and concentrate our efforts on branch-
errors.

When a fault occurs in a branch instruction, the
control-flow can be deviated to any point in memory.
Most of modern processors have memory access
protection mechanisms that can detect when the
processor tries to execute instructions from non-code
regions. The execute disable bit is an example of such
feature in the new generations of Intel processors.
Therefore, jumps to memory regions that do not
contain code can be detected by the hardware and
handled by the operation system. Self modifying code
can also be an issue, but we will see that our dynamic
binary translator can easily handle it.

On the other hand, control-flow deviations that
reach the application code are not detected by these
memory protection mechanisms; and these errors can
produce silent data corruption (SDC) [8], which can
cause the program to generate a wrong output.

In order to evaluate the error coverage of software-
based control-flow error checking techniques, we
propose a branch-error classification, where we divide
the errors into six categories. Figure 1 depicts the
branch-errors categories in a control-flow graph. The
solid lines show the correct control-flows and the
dashed lines represent the different categories of
branch-errors.

BB 1

BB 3BB 2

BB 4

A

D

F

C B

E

Figure 1 - Branch-error categories. A: mistaken
branches. B: Jump to the beginning of the same
basic block. C: Jump to the middle of the same
basic block. D: Jump to the beginning of other

basic block. E: Jump to the middle of other basic
block. F: Jump to a non-code memory region.

The branch-error categories in Figure 1 are
classified according to the target. Category A
represents the mistaken branches, in other words, the
errors occur when the branch was supposed to jump,
but falls through (or vice-versa). Categories B and C
are characterized by errors that change the control-
flow to the same basic block of the branch instruction;

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

the only difference is that category B represents jumps
to the beginning of the basic block, and category C
represents jumps to the middle (including the end) of
the basic block. The same analysis used in categories B
and C are applied to categories D and E, but in this
case the errors change the control-flow to different
basic blocks. Category F represents the control-flow
errors that jump to a non-code memory region. As we
stated before, errors in this category can be detected by
memory access protection mechanisms.

In order to determine the importance of each
branch-error category, we propose an error model to
measure the probability for an error to occur at a
branch-error category. We implemented the error
model in our dynamic binary translator (described in
Section 5) and evaluated the branch-error probabilities
using the SPEC2000 benchmark.

The error model assumes a soft-error that results in
1 bit change in the address offset of the branch
instruction or in the flags that determine the
conditional branches direction. We consider that each
bit in the address offset and in the flags has the same
error probability.

Indirect branches generally have their target
determined only at runtime. In order to compute the
error probabilities in these instructions we have to
modify the application code to analyze the bit errors in
the branch target address every time the instruction is
executed. Since, on the average, the execution
frequency of indirect branches represents less than 5%
of the total branches execution frequency, we simplify
the analysis by not accounting the errors in these
branches.

Given that soft-errors are temporal errors, we have
to take into account the execution frequency of each
instruction. The taken and not taken ratio is also
important. When a conditional branch is not taken, a

fault in the address offset does not change the normal
control-flow, therefore it is not treated as an error.
Considering this, we divide the error probabilities into
taken and not taken. We also subdivide the errors into
addresses and flags. Figure 2 shows the branch-error
probabilities for the integer and the floating-point part
of the SPEC2000 benchmark suite.

 Accordingly to the error model, if we look at the
SPEC-Int benchmark and assume a 1 bit fault at a
branch instruction, the probability for an error in
category A to occur is 4.6%. Faults in the flags when
the branch is not taken are responsible for 2.74% of
these errors.

Figure 3 - Branch-error probabilities for categories
A, B, C, D, and E.

Most of the faults generate errors in category F or
do not lead to errors. Since the memory protection
systems can detect the errors in category F and we are
not interested in faults that do not generate errors, we
focus our attention to errors in categories A to E, in
other words, the errors that may lead to silent data
corruption. Figure 3 shows the branch-error
probabilities when considering only these categories.

Notice that most of the errors are in category E,
followed by category A. Categories C and D have
different behavior in the SPEC-Int and the SPEC-Fp
benchmarks. Given that the floating-point applications

Error Probability Branch-error
Category SPEC-Int SPEC-Fp

A 20.70% 17.33%
B 0.41% 0.03%
C 2.22% 16.98%
D 4.04% 1.52%
E 72.62% 64.14%

Total 100.00% 100.00%

Figure 2 - Branch-error probabilities for the SPEC-Int and SPEC-Fp 2000 benchmarks.

SPEC-Int 2000 SPEC-Fp 2000
Taken Not taken Taken Not taken Branch-error

Category
Addr. Flags Addr. Flags

Total
Addr. Flags Addr. Flags

Total

A 0.11% 1.75% 0.00% 2.74% 4.60% 0.15% 3.65% 0.00% 1.83% 5.63%
B 0.09% 0.00% 0.00% 0.00% 0.09% 0.01% 0.00% 0.00% 0.00% 0.01%
C 0.49% 0.00% 0.00% 0.00% 0.49% 5.52% 0.00% 0.00% 0.00% 5.52%
D 0.90% 0.00% 0.00% 0.00% 0.90% 0.49% 0.00% 0.00% 0.00% 0.49%
E 16.13% 0.00% 0.00% 0.00% 16.13% 20.84% 0.00% 0.00% 0.00% 20.84%
F 16.23% 0.00% 0.00% 0.00% 16.23% 28.46% 0.00% 0.00% 0.00% 28.46%

No Error 0.00% 4.43% 50.95% 6.17% 61.56% 0.00% 5.44% 29.97% 3.64% 39.05%
33.95% 6.19% 50.95% 8.91% 55.47% 9.09% 29.97% 5.47%

Total
40.14% 59.86%

100.00%
64.56% 35.44%

100.00%

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

have big basic blocks, the probability of error in
category C is higher than category D in the SPEC-Fp
benchmark.

3. Control-flow Checking Techniques

Control-flow checking is usually performed through
signature monitoring. The basic idea is to detect errors
by comparing a run-time signature with a pre-
computed one. Although some works have used
hardware to assist the checking, we focus on the
software-only techniques.

Alkhalifa et al. [1] proposed the Enhanced Control-
flow Checking using Assertions (ECCA). This
technique modifies the source code inserting a test
assertion in the beginning of every basic block to
check the signature, and a set assignment in the end to
update the signature to the next basic blocks. The
technique use expensive instructions (div and mul) to
check and update the signature, and cannot detect
control-flow errors in category A.

 The control-flow checking by software signatures
[12] (CFCSS) assigns a signature to each basic block,
and uses a shadow PC register (PC’) to track these
signatures and to detect the errors in the control flow.
PC’ is implemented using a general purpose register
that always contains the signature for the currently
executing block. Upon entry to any block, the PC’ is
xor’ed with a statically determined constant to
transform the previous block’s signature into the
current block’s signature. After the transformation, the
PC’ can be compared to the basic block signature. The
CFCSS technique requires that common predecessor
blocks have the same signature. Due to this restriction,
the technique cannot detect errors in categories D and
E if the correct and the wrong target have the same
signature. Since the signature is updated only at the
beginning of the basic block, errors in category C also
cannot be detected. Finally, the CFCSS technique
updates the current basic block signature using the
predecessor basic block signature; therefore, the
successors of a branch basic block cannot distinguish
if the last branch was mistaken. Consequently, errors
in category A are not detected.

The ECF (enhanced control-flow checking),
proposed by Reis et al. [13], extends the CFCSS
technique with a run-time adjusting signature (RTS).
They innovate by introducing a conditional signature
update, so that predecessor or successor basic blocks
are not required to have the same signature. Figure 4
shows an example of the ECF technique using the
“cmovle” instruction to update the RTS accordingly to
the next basic block.

1: xor PC’, RTS
2: cmp PC’, L0
3: jnz .report_error
…
4: cmp R1’, R2’
5: mov RTS, L0_to_L1
6: mov AUX, L0_to_L2
7: cmovle RTS, AUX
8: cmp R1, R2
9: jle BB2

BB1h

BB1t

BB 1 (L0)

Figure 4 - ECF technique applied to a basic block
with signature L0.

The conditional signature update in ECF fixes
limitation of the CFCSS technique of not being able to
detect errors in categories A, D and E. To the best of
our knowledge, this is the first technique to cover all
the branch-errors in categories A, B, D, and E, which
represents the best error coverage when considering
the experimental results with our error model.
Although the technique covers most of the categories,
it still cannot detect errors in category C, which
represents 16.98% of the potential errors in the SPEC-
Fp 2000 benchmark.

In order to detect the errors in all the branch-error
categories we propose two new comprehensive
control-flow checking techniques: the first is the Edge
control-flow checking technique (EdgCF) and the
second is the Region based control-flow checking
technique (RCF).

3.1. The Edge Control-Flow Checking
Technique

The main idea behind the Edge Control-Flow
(EdgCF) Checking Technique is to update the PC’
register with the next basic block signature in the end
of the current basic block and check it in the beginning
of the next one. Figure 5 shows an example of PC’
being updated and checked. Instruction 5 updates the
PC’ with the next basic block signature. L1_to_L2 is a
constant that when xor’ed with L1 generates L2.
Instructions 1 and 2 check PC’.

Notice that the example in Figure 5 still does not
detect errors that jump to the middle of the correct
target basic block. If, due to a fault, instruction 7
branches directly to instruction 4, the execution skip
instructions 1 to 3, then the code will not detect the
error.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

BB 1 (L1)

BB 2 (L2)

...
5: xor PC’, L1_to_L2
6: cmp ...
7: jmp BB2

1: cmp PC’, L2
2: jnz .report_error
3: add ...
4: sub ...

Figure 5 - PC’ update and branch error example.

The undetected error in Figure 5 occurs because the
control-flow jumps between two points that have the
same signature (L2). In order to detect this kind of
error we also update the signature in the beginning of
the basic block. Figure 6 shows the EdgCF technique
updating PC’ in the beginning of the basic blocks.

1: xor PC’, L1
2: cmp PC’, 0
3: jnz .report_error
…
5: xor PC’, L2
6: cmp …
7: jmp BB2

1: xor PC’, L2
2: cmp PC’, 0
3: jnz .report_error
4: add …
5: sub …

BB 1 (L1)

BB 2 (L2)

BB1h

BB1t

Figure 6 - PC' updated in the beginning of the basic
blocks.

The EdgCF technique modifies PC’ so that between
two basic blocks (in the control-flow edges), the PC’
contains the correct next basic block signature, and in
the middle of the basic blocks it contains zero. The
technique is able to detect the fault that makes
instruction 7 in BB1 jumps to the middle of BB2 in
Figure 6 (similar to the jump in Figure 5). Although
this fault skips the checking code in BB2, the PC’
value will also be wrong in the next basic block, and
the next checking code will detect the error.

To update PC’ at the end of the basic block, we
need to consider the following cases:

If the basic block has only one successor: we
insert an instruction to transform the current value

of PC’ (zero) to the new value (the successor basic
block signature).
If the basic block has a conditional branch: we use
conditional instructions (such as predicated
instructions, or conditional branches) to update the
signature accordingly to the next basic blocks.
If the basic block has a dynamic branch, such as
an indirect jump, a call, or a return instruction: we
generate code to get the dynamic target address
and map it to the target basic block signature. To
avoid the cost of mapping the address to the
signature, we use the address of the first
instruction in a basic block as the basic block
signature. This is very convenient, since in this
way we always have unique signatures, and the
address to signature mapping has no cost.

In the IA-32 architecture, the return (“ret”)
instruction is an implicit dynamic branch. This
instruction pops the target address from the stack and
branches to it. Figure 7 shows the EdgCF technique
code to update PC’ in the end of a basic block when it
has a “ret” instruction. Instruction 5 copies the target
address to register R1, and instruction 6 changes PC’
accordingly to the next basic block using R1.

BB 1
...

6 : xor PC’, R1
7 : ret

5 : mov R1, [RSP]

Figure 7 – PC’ updated in the end of a basic block
with a dynamic branch (“ret” instruction).

Figure 8 shows an example of a basic block with a
conditional branch. Instructions 6 to 10 update the PC’
(using the conditional move instruction-“cmov”) to the
next basic block signature (L1 or L2) accordingly to
the branch condition (note that we assume that the xor
instruction won’t change the flag set by the cmp
instruction at 6. We will address this issue late).

The example in Figure 8 uses a branch instruction
to report the detected error. This instruction is a new
potential source of branch-errors, but the EdgCF and
the previous techniques do not handle the potential
errors properly. Notice that if, due to a soft-error,
instruction 3 jumps to another basic block, the
technique still detect the error, but if the control-flow
deviation is to the middle of the same block, the
techniques will not detect it. since the PC’ will remain
zero according to our single error model. The ECCA
technique [1] uses the “div” instruction to check the
signature. The technique generates two numbers and
divides both so that if the signature is wrong, a

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

division by zero exception occurs. The divide by zero
exception handler is modified to detect if the exception
is a control-flow error or a pure divide by zero
exception. Although the EdgCF technique can use the
same approach to check the signature, the “div”
instruction is very expensive, and the performance
overhead would be prohibitive. To avoid this
performance overhead and detect the potential branch-
error introduced by the new branch instructions, we
proposed the Region Based Control-Flow Checking
technique.

BB 1 (L1)
1 : xor PC’, L1
2 : cmp PC’, 0
3 : jnz .report_error
...
6 : cmp R1’, R2’
7 : mov AUX, PC’
8 : xor PC’, L2
9 : xor AUX, L3
10: cmovle PC’, AUX
11: cmp R1, R2
12: jle BB3

Figure 8 - Basic block with a conditional branch.

3.2. The Region Based Control-Flow Checking
Technique

In order to protect the execution from control-flow
errors on the new branch instructions introduced in the
basic block, we create a different region for each
branch instruction, and a region for the original basic
block instructions. We will call this approach Region
based Control-Flow (RCF) Checking. Figure 9 shows
the RCF technique applied to the code in Figure 8. The
region R1E represents the entrance of the basic block
BB1. The signature checking code is placed in this
region. Region R1 is assigned to the original basic
block instructions and the regions that appear from
instruction 9 to 12 (R2E and R2E/R3E) are result of
the signature update code in the conditional basic
block. The region R2E/R3E means that both R2E and
R3E are valid signatures.

Notice that the branch instruction introduced to
check the signature is protected by region R1E. In
other words, if a branch-error occurs in this branch
instruction, and the instruction jumps to code out of
this region, the signature will be wrong, and the
technique will detect the error. We could assign a
region for each instruction, and so increase the
protection from non-branch-errors, but the

performance cost and code footprint size would be
prohibitive.

We update PC’ in the end of basic blocks using the
same approach in EdgCF technique.

Figure 9 - Regions attributed to a basic block.
Region R2E/R3E means that R2E and R3E are valid

signatures.

4. Correctness

In this section, we first formalize the control flow
checking problem. All the signature-based control
flow checking techniques can be formalized in the
same way. The only differences between them are
different signature generation function GEN_SIG and
signature checking function CHECK_SIG. Based on
that, we give the sufficient and necessary conditions
for the GEN_SIG and CHECK_SIG function in order
to detect any single control-flow error without false
positive. The previous control flow checking
techniques do not satisfy the sufficient condition.
Therefore, none of them can detect all possible single
control-flow errors. We show that our EdgCF
technique can detect any single control-flow error by
proving that it satisfies both the sufficient and
necessary condition. At last, we also show that the
GEN_SIG function in our EdgCF technique is among
the simplest functions (hence the lowest overhead) that
can satisfy both the sufficient and necessary condition.

4.1. Control Flow Checking Problem

To detect the control-flow errors on branch
instructions, we must distinguish the following two
different branch targets:

Definition 1: The logic branch target is the branch
target in the program semantic.

Definition 2: The physical branch target is the
branch target in the program execution.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

Without control-flow error, the logic branch target
and the physical branch target are the same. The
control-flow errors lead to the mismatch between the
logic branch target and the physical branch target. So
the goal of control-flow checking is to detect the
mismatch between the logic branch target and the
physical branch target.

To formalize the control-flow checking problem,
we divide the program into basic blocks so that
control-flow errors happen only at the end of a block.
With basic blocks, we can represent each logic branch
target as a basic block (e.g. using the beginning
address of basic block). However, we can not
represent the physical branch targets as basic blocks
because a control flow error may jump to the middle of
a basic block.

To handle the jump-to-the-middle problem, we
further split each basic block B into two basic blocks:
the head block Bh and the tail block Bt, as shown in
Figure 10. The head block Bh contains no instruction
in block B. (Although Bh contains no instruction in
original block B, it may be instrumented with
instructions for control flow checking, see section 4.2.)
It only acts as the entry point of block B and falls
through to the tail block (Bt). The tail block Bt
contains all the instructions in block B. We should
note that, the control flow error never happens on the
fall-through edge Bh Bt. So the correct control
flow B1 B2 becomes B1h B1t B2h B2t,
and the control flow error that B1 jumps to the middle
of B2 can be modeled as B1h B1t B2t. In this
way, we can ignore the jump-to-the-middle problem
and simply represent each physical branch target also
as a basic block.

Figure 10 - Split Basic Block.

With the above treatment, we now can formalize
any program execution path (including both the correct

program execution paths and the program execution
paths with control-flow errors) as follows:

Definition 3: The program execution path is a
sequence of basic blocks Bi, 0 i n, where n is the
number of blocks executed in the program, such that
Bi+1 is the physical branch target of the last branch
instruction of Bi. Also for each basic block Bi, 0 i <
n, there is a basic block Ti+1, which is the logic branch
target of the last branch instruction of Bi. In other
words, Bi+1 is the basic block executed after Bi, and Ti+1
is the basic block that was supposed to be executed
after Bi.

With definition 3, the control-flow checking
problem is to answer the following question:

niBT ii 0?,)(11

4.2. Control Flow Checking Technique

To solve the control flow checking problem, the
signature-based control flow checking techniques
instrument a signature generation function GEN_SIG
at the exit of each (head and/or tail) block to generate a
signature for the program execution path. They also
instrument a signature checking functions
CHECK_SIG at the entry of each (head and/or tail)
block to check the signature for control flow error
detection.

Different control flow checking techniques use
different GEN_SIG and CHECK_SIG functions. For
example, in the EdgCF technique shown in Figure 6,
the signature is computed and placed in PC’. In block
BB1, Instruction 1 belongs to the head block (block
BB1h) and the rest instructions belong to the tail block
(block BB1t). At the exit of block BB1h, instruction 1
generates the signature with:

1'' LPCPC
At the exit of block BB1t, instruction 5 generates

the signature with:
2'' LPCPC

At the entry of block BB1t, instruction 2-3 checks
the signature with:

?)0'(PC
As another example, in the ECF techniques shown

in Figure 4, the signature is computed and placed in a
pair <PC’, RTS>. In block BB1, Instruction 1 belongs
to the head block (block BB1h) and the rest
instructions belong to the tail block (block BB1t). At
the exit of block BB1h, instruction 1 generates the
signature with:

RTSRTSPCRTSPC ,','

Instruction 1
B

Instruction 2
...
Instruction n

Bh

Bt
Instruction 1
Instruction 2
...
Instruction n

Fall Through

Basic Block After SplitOriginal Basic Block

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

At the exit of block BB1t, instruction 4-7 generates
the signature with:

1__0,',' LtoLPCRTSPC
or

2__0,',' LtoLPCRTSPC
At the entry of block BB1t, instruction 2-3 checks

the signature with:
?)0'(LPC

4.3. Assumptions

To prove the correctness of the control-flow
checking techniques, we have to make some basic
assumptions on the following instrumentation-
dependent issues:

Issue 1: The instrumented code itself is also
susceptible to control-flow errors.

Issue 2: A soft-error may change the control-flow
so that it skips the instrumented code, thus escaping
the checking.

With Issues 1, a control flow error may jump to the
middle of the instrumented code, whose effect is
implementation-dependent. Moreover, the
instrumented code needs to be implemented with self-
checking if itself has control-flow error. Here we do
not consider those implementation details (although
our RCF technique can handle the error in the
instrumented branch instruction). So we make the
following assumption:

Assumption 1: The instrumented function
(GEN_SIG or CHECK_SIG) is an atomic unit such
that either all or none of it is executed.

Assumption 1 simplifies our later discussion.
Based on our experience in IA32, the control flow
errors that break the atomicity of GEN_SIG and
CHECK_SIG function usually lead to the program
fails (e.g. illegal instruction trap) or checking fails. So
the non-atomicity of these functions does not affect
much to the control flow checking. Moreover, the
GEN_SIG function and CHECK_SIG function are
typically implemented as simple as possible to reduce
the checking overhead. So the probability that a
control flow error breaks the atomicity of these
functions is small.

With issue 2, if a control-flow error escapes all the
instrumented checking functions, there is no way to
detect the error. So we have to make the following
assumption:

Assumption 2: A control flow error may skip
CHECK_SIG functions. However, any control-flow
error must finally reach at least one CHECK_SIG
function.

4.4. Correctness Condition

We denote the signature generated at the exit of
block Bi and checked at entry of block Bi+1 as Si+1. The
signature checking function CHECK_SIG at the entry
of block Bi+1 need to check Si+1 for control flow error.
Therefore, the signature checking function at the entry
of block Bi+1 should be in the form:

?),(_ 11 ii BSSIGCHECK
The signature Si+1 generated at the exit of block Bi

must depend on Ti+1 in order to detect the control flow
error happens from Bi to Ti+1. Moreover, with
assumption 2, in order to detect all the control flow
errors, one single CHECK_SIG function must be able
to detect all the control flow errors along the whole
program execution path. So the signature Si+1 also
need to recursively depend on the previous signature Si
to detect the control flow error happened in previous
blocks. Therefore, the signature generation function at
the exit of block Bi should be in the form:

),,(_ 11 iiii TBSSIGGENS
If we only consider the single-error along the

program execution path, we can get the following
sufficient condition for detecting any single control-
flow error:

Sufficient Condition:

),(_

0,,,,0, 1111

nn

iijj

BSSIGCHECK
nijiBTBTnjj

The sufficient condition only guarantees that there
is no false negative in the checking. However, it may
produce false positives. To avoid the false positives,
we need the following necessary condition:

Necessary Condition:
),(_0,11 nnii BSSIGCHECKniBT

All the previous control flow techniques [1][12][13]
satisfy the necessary condition. Unfortunately, none of
them satisfy the sufficient condition. Therefore, none
of them can detect all possible single control-flow
errors. Next we show that our EdgCF technique can
detect any single control-flow error by proving:

Claim 1: The GEN_SIG function and CHECK_SIG
function in EdgCF technique satisfies both the
sufficient and necessary condition:

Proof: First, if we represent each head block by the
unique block address and each tail block by 0, the
GEN_SIG and CHECK_SIG function in EdgCF
techniques can be expressed as

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

)(),(_
),,(_

yxyxSIGCHECK
zyxzyxSIGGEN

 (4)

To check (4), with block BB1 in Figure 6, we can
derive:

1')0,1,'(_
)1,1,'(_

LPCLPCSIGGEN
tBBhBBPCSIGGEN

2')2,0,'(_
)2,1,'(_

LPCLPCSIGGEN
hBBtBBPCSIGGEN

)0'()0,'(_
)1,'(_

PCPCSIGCHECK
tBBPCSIGCHECK

For simplicity, here we represent all the tail blocks
by 0, which is not unique for each tail block. This
does not affect the correctness of our control flow
checking technique because the control flow error
never happens on the fall-through edge from a head
block to a tail block (see section 4.1).

Next, with formula (4) and S0 = B0, we can derive:

),(_

0,

0011

11

nn

nnnnnn

ii

BSSIGCHECK
BTBSTBSS

niBT

And

),(_

0,,,,0,

1111

1111

nn

nnjjnnnn

iijj

BSSIGCHECK
BTTBTBSS

nijiBTBTnjj

�
For previous discussion, we know that the signature

generation function GEN_SIG must change with Si, Bi
and Ti+1. So the GEN_SIG function in (4) is among
the simplest functions (hence the lowest overhead) that
can satisfy both the sufficient and necessary condition.
Another similar choice is GEN_SIG (x, y, z) = x - y +
z, which also satisfies both the sufficient and necessary
condition. In real implementation, we actually use this
function to avoid the EFLAGS problem in IA32 (see
Section 5.1).

5. Implementation

We implemented the control-flow checking
techniques in our dynamic binary translator (DBT).

The overall structure of the DBT is shown in Figure
11. The DBT runs on top of OS as a user-level run-
time system. The program binary code is dynamically

translated and stored into the code cache. Then the
translated code can be executed under the control of
the DBT, which allows us to apply different dynamic
binary translation techniques to the code, such as
compatibility support, security checking, reliability
enforcement, performance improvement, etc.

The DBT consists of three individual modules: the
Runtime module, the Frontend module and the
Backend module.

The Runtime module provides the system supports
for the DBT. It automatically loads the original
program code into memory and initializes the program
execution context at program startup. To facilitate the
program execution, it provides all OS interfaces such
as I/O and system calls. The Runtime module also
handles all the system events such as OS call-backs,
exception, dynamic library load, and code self-
modification, etc.

Program Binary Code

Run Time Front End

Back End

Code
Cache

DBT

OS

Control Flow Data Flow

Figure 11 - The dynamic binary translator overall
structure.

The Frontend module manages the whole program
execution for dynamic binary translation. It
dynamically recognizes the original program
instructions, translates them into instructions in the
code cache using different dynamic binary translation
techniques, and controls the code execution in the code
cache. For the system related features in the program,
it interacts with the Runtime module to get system
support. To provide optimization to the dynamic
binary translation, the Frontend module also collects
program profiling information during the code
execution and selects hot traces based on the profiling
information for run-time optimization by the Backend.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

The Backend module performs run-time
optimization for the dynamic binary translations. It
builds an intermediate representation (IR) from the hot
traces selected by the Frontend module. It then
performs optimizations on the IR, and finally generates
optimized code into the code cache to improve
performance.

In our experiments, we configured the DBT to
translate IA32 [7] to EM64T [6] binary code.

The binary translation is done on demand, which
means that every time a non-translated basic block has
to be executed, the DBT takes control of the execution
and translate the basic block. Therefore, only executed
blocks are translated.

The code cache and the DBT code are placed in
memory pages with the execute disable bit set to allow
execution. This allows us to detect branch-errors in
category F.

Self-modifying code is handled using the write
protection mechanism. Whenever the program
modifies the original code, the processor raises an
exception and the DBT takes control of the execution.
After this, the DBT identifies and removes the
outdated code that was previously translated from the
modified code. As soon as the control flows to the
modified code, DBT naturally translates it into the
code cache as if it was never translated before.

In order to implement the control-flow checking
techniques, we insert instructions to check and update
the signature in every translated basic block. Due to
the translation on demand scheme, the CFG is changed
during the execution; therefore, we do not implement
the techniques that need the CFG to attribute
signatures to the basic blocks, such as CFCSS and
ECCA. The ECF, EdgCF and RCF techniques were
implemented using the address of the first instruction
in each basic block (region) as the signature number.

5.1. EM64T Architecture Issues

The control-flow checking techniques require
dedicated registers for PC’, and for the runtime
signature register (RTS) in the ECF technique. Since
the EM64T architecture has more registers than the
IA32 one, we do not need to spill registers to provide
PC’ and RTS during the translation of IA32 programs
to EM64 code.

When modifying the binary, we have to make sure
that the inserted instructions do not change the
program behavior. Although the instructions to update
the signatures only modify registers not used by the
original program, the “xor” instruction implementation
in the EM64T architecture modifies the EFLAGS
register. Therefore, instead of using the “xor”
instruction, we use load effective address (lea). The
“lea” instruction does not have side-effects and has
performance similar to the “xor” instruction.
Moreover, it is a three address instruction, which
allows us to save some instructions in the
implementation. Figure 13 shows the usage of the
“lea” instruction to update the signature.

We implemented the signature checking using both
the “cmov” and the branch instructions. The approach
insert branches in the ECF and EdgCF techniques is
unsafe, however, it provides a fair performance
comparison with the RCF technique.

The signature checking code must not generate
side-effects as well. In order to check the signature
without changing the EFLAGS, we use the jump if CX
is zero (jcxz) instruction. Figure 13 shows an example
of the RCF technique checking the signature.
Instruction 1 updates PC’ to R1C region. Instructions 2
and 6 save and restore CX, and instructions 3 to 5
check PC’.

Figure 12 - Performance slowdown for the RCF, EdgCF and ECF techniques.

0.000

0.500

1.000

1.500

2.000

2.500

168
.w

upwise

171
.swim

172.m
gri

d

173
.applu

17
7.m

esa

178
.galgel

179.a rt

183
.equak

e

187.f
ac

erec

188.a
mmp

189
.lu

ca
s

19
1.fm

a3
d

200.sixtra
ck

301.a
ps

i

geom
ea

n-fp

164.g
zip

17
5.vp

r

176
.gcc

18
1.m

cf

18
6.cr

afty

197.pars
er

252.e
on

25
3.perlb

mk

254.gap

255.v
orte

x

256.b zip
2

300
.tw

o lf

geo
mean-i

nt

ge
omean

-al
l

RCF Slow dow n EdgCF Slow dow n ECF Slow dow n

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

Figure 13 - RCF technique checking the signature.

6. Experimental Results

The results were generated using an Intel Xeon
machine with 3.6 GHz and 4GB of RAM. We
executed the SPEC 2000 benchmark with the reference
data set. The baseline results are the applications
running on the DBT with no instrumentation. The
average slow down from the native code to running on
DBT is about 12%.

Figure 12 shows the performance slowdown for the
SPEC 2000 applications when applying the RCF,
EdgCF and ECF techniques in the DBT. The left part
of Figure 12 shows the SPEC floating point
benchmarks and the right part shows the integer ones.
The figure also shows the geometric mean for the
floating point, the integer, and the entire benchmark.
The techniques RCF, EdgCF, and ECF presented an
average slowdown of 1.46, 1.41, and 1.39 times,
respectively.

Notice that the performance slowdown is less
dramatic in the floating point benchmarks. It happens
because these benchmarks have large basic blocks
and/or more time-consuming instructions (like floating
point instructions).

Since the RCF technique requires the signature to
be updated more than twice in each basic block, it
inserts more instructions per basic block than the other
techniques. Therefore, this technique shows worse
performance than the other two. The EdgCF and the
ECF techniques insert the same amount of instructions
per basic block. However, in the current ISA, the ECF
uses cheaper instructions to update the signature,
which leads to a slight performance difference.

Although the RCF technique presented the worst
performance, it has the best error coverage, since it can
detect the errors in the branch instructions inserted to
update and check the signatures. The EdgCF and ECF
techniques can use safe instructions (like “cmov” and
“div”) to update and check the signatures, but these
instructions may lead to performance loss. We also
implemented the control-flow techniques using the
“CMOVcc” (conditional move) instruction to update
the signature. Figure 14 shows the average

performance slowdown for the SPEC 2000 benchmark
when using the “Jcc” (conditional jump) and the
“CMOVcc” (conditional move) instruction to update
the signature. The shadowed area shows the unsafe
configurations.

Notice that the RCF technique using “Jcc”
instructions, which is safe, almost beats the ECF
technique when using “CMOVcc” instructions.

Figure 14 - Performance slowdown when using the
“Jcc” and “CMOVcc”. The shadowed cells indicate
the techniques that are unsafe when implemented

using the “Jcc” instruction to update the signature.

The fail-stop model relies on the halt-on-failure
property [4]. Accordingly to this property, the error
should be detected and the process stopped before
writing permanent data or communicating with other
processes. The existing software-based control-flow
checking techniques, however, are not able to
implement the halt-on-failure property, even if it
checks the signature after each instruction. It happens
because a branch-error can change the control-flow
directly to an instruction that store data in the memory,
and even if the error is detected immediately after the
instruction, the stored data may be a communication
with other processes or a permanent data write. For
that reason, we assume a relaxed fail report model,
where the error must be reported, but not necessarily
before any data write or communication.

As long as we are not required to report the error
immediately, the control-flow checking techniques can
be optimized for performance by not checking the
signature at every basic block. Notice that the
signature may not be checked, but it still has to be
updated in every basic block. This is valid because if
an error occurs, and the signature becomes wrong,
each update to PC’ will also generate a wrong
signature, therefore, if we consider only single errors,
once the signature becomes wrong, it will always be
wrong, and the signature can only be checked for
correctness in the end of the program (or functions).
As an example of optimization, Reis et al. [13]
proposed checking the signature only in basic blocks
that have store instructions.

In order to evaluate the impact that signature
checking has on performance, we implemented four
signature checking policies in the control-flow
checking techniques:

Performance Slowdown Update
instruction RCF EdgCF ECF

Jcc 1.46 1.41 1.39
CMOVcc 1.57 1.54 1.44

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

ALLBB: the signature is checked in every basic
block.
RET-BE: the signature is checked in basic blocks
with back edges, and in basic blocks with return
instructions.
RET: the signature is checked in basic blocks with
return instructions.
END: the signature is checked only in the end of
the application.

The signature checking policies presentation is
sorted by the signature checking frequency. Notice that
the less frequently we check the signature, the more
delay it can take to report the error. Moreover, a
branch-error may lead the program to an infinite loop,
and in the case of the RET and END policies, where
the signature is not checked inside loops, the error may
not be reported. The RET-BE method places checks in
the blocks that have back edges to help preventing
infinite loops. Figure 15 compares the RCF technique
performance when implementing the four signature
checking policies.

The performance improvement is higher in the
integer benchmark than in the floating-point one. On
the average, the performance slowdown dropped from
77% to 37% when comparing the ALLBB to the RET-
BE policy in the integer benchmark, from 23% to 18%
in the floating-point benchmark, and from 46% to 26%
in the entire benchmark. Again, the difference in the
performance improvement is because the floating-point
benchmarks have large basic blocks and/or more time-
consuming instructions (like floating point
instructions).

The average performance slowdown is 46% for the
ALLBB policy, and 16% for the END one. Since the
END policy only checks the signature once, and the
ALLBB policy check it in every basic block, we can
see that the signature checking is responsible for a big
share in the performance slowdown. Even though it is
an impressive performance improvement, the END

policy may not report branch-errors that lead the
program to infinite loops.

Although the RET policy checks the signature more
frequently than the END one, both policies have
similar performance. It happens because the programs
spent most of the executing time in inner loops rather
than calling and returning from functions.

In our tests, the DBT itself was not modified to
provide reliability. The binary translation time is very
small compared to the application execution time.
Therefore, we estimate that a reliable version of the
DBT translator will not change significantly the total
execution time.

7. Conclusion and Future Work

In this paper we study a special class of errors
called control-flow errors. We proposed a new control-
flow error classification, a model to measure the
branch-error probabilities, and two new control-flow
checking techniques: the Edge Control-Flow and the
Region Based Control-Flow checking techniques. We
also formalized the control-flow checking problem and
provided a proof that our control flow checking
technique can detect any single control-flow error.

We implemented the techniques in our dynamic
binary translator and evaluate them using the
SPEC2000 benchmark. The results show that the RCF
technique can cover all the branch-errors, including
those that occur at the conditional branch instructions
inserted to update/check the signature, and the
performance cost is very close or even better than the
other techniques.

In the future we will add data flow checking into
our implementation and measure the overall
performance impact. We will also work on soft-error
injection to measure the actual effectiveness of our
techniques in detecting both control and data flow
errors.

0.000

0.500

1.000

1.500

2.000

2.500

168.w
upw

ise

171.s
wim

172
.m

grid

173
.applu

177
.m

esa

178.galge
l

179
.a rt

183.e
quake

187
.fa

ce
rec

188
.ammp

189
.lu

ca
s

191
.fm

a3d

200.s
ixtra

ck

301
.apsi

ge
omean

-fp

164
.gzip

17
5.vp

r

176.g cc

181.m
cf

186
.crafty

197
.parser

252
.eon

253
.perlb

mk

25
4.gap

255
.vort

ex

256.b
zip

2

300.t
wo lf

ge
omean

-in
t

geo
mean-a

ll

RCF ALLBB Slow dow n RCF RET_BE Slow dow n RCF RET Slow dow n RCF END Slow dow n

Figure 15 - SPEC2000 performance for the RCF technique implementing the signature checking policies.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

8. Acknowledgments

We would like to thank Shubu Mukherjee, George
Reis, Sri Nair, Ho-seop Kim, Mauricio Breternitz, Jr,
Brian Deitrich, and the anonymous reviewers for their
valuable comments and discussions. We also
appreciate the support provided by Jesse Fang at the
Programming System Laboratory at Intel.

9. References

[1] Z. Alkhalifa, V. S. S. Nair, N. Krishnamurthy, and J. A.
Abraham, Design and evaluation of system-level checks
for on-line control-flow error detection, IEEE Trans.
Parallel Distrib. Syst., vol. 10, pp. 627-641, June 1999.

[2] H. Ando et al., A 1.3GHz Fifth Generation SPARC64
Microprocessors, Proc. IEEE International Solid-State
Circuits Conference. (ISSCC 03), IEEE Press, 2003, pp.
246-247.

[3] R. Baumann, Soft Errors in Commercial Semiconductor
Technology: Overview and Scaling Trends, IEEE 2002
Reliability Physics Symp. Tutorial Notes, Reliability
Fundamentals, IEEE Press, 2002, pp.121-01.1-121-
01.14.

[4] S. Chandra, P. M. Chen, How Fail-Stop are Faulty
Programs?, Proceedings of the 1998 Symposium on
Fault-Tolerant Computing (FTCS) , June 1998.

[5] C. Constantinescu. Trends and challenges in VLSI
circuit reliability. IEEE Micro, vol. 23, pp. 14-19, Jul.-
Aug. 2003.

[6] Intel@ Extended Memory 64 Technology Software
Developer’s Guide

[7] IA-32 Intel@ Architecture Software Developer’s
Manual

[8] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The Soft
Error Problem: An Architectural Perspective,
proceeding of the 11th Int’l Symposium on High-
Performance Computer Architecture (HPCA-11), pages
243-247, 12-16 Feb. 2005.

[9] T. Michel, R. Leveugle and G. Saucier. A New
Approach to Control-flow Checking without Program
Modification. Proc. FTCS-21, 1991, pp. 334-341.

[10] M. Namjoo. CERBERUS-16: An Architecture for a
General Purpose Watchdog Processor. Proc. Symposium
on Fault-Tolerant Computing. 1983, pp.216-219.

[11] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler,
H. P. Muhlfeld, I. C. J. Montrose, H. W. Curtis, and J.
L. Walsh. Field testing for cosmic ray soft errors in
semiconductor memories. In IBM Journal of Research
and Development, pages 41-49, January 1996.

[12] N. Oh, P. P. Shirvani, and E. J. McCluskey. Control-
flow checking by software signatures. IEEE
Transactions on Reliability, vo. 51, No 2, pp. 111-122,
March 2002.

[13] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and
D. I. August. SWIFT: Software Implemented Fault
Tolerance. Proceedings of the Third International
Symposium on Code Generation and Optimization
(CGO), March 2005.

[14] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger,
and L. Alvisi. Modeling the effect of technology trends
on the soft error rate of combinational logic. In
Proceedings of the 2002 International Conference on
Dependable Systems and Networks, pages 389-399, June
2002.

[15] N. R. Saxena, E. J. McCluskey. Control-flow Checking
Using Watchdog Assists and Extended-Precision
Checksums. IEEE Transactions on Computers, Vol. 39,
No. 4, Apr. 1990, pp. 554-559.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’06)
0-7695-2499-0/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

