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Abstract

Shrinking microprocessor feature size and growing 
transistor density may increase the soft-error rates to 
unacceptable levels in the near future. While reliable 
systems typically employ hardware techniques to 
address soft-errors, software-based techniques can 
provide a less expensive and more flexible alternative. 
This paper presents a control-flow error classification 
and proposes two new software-based comprehensive 
control-flow error detection techniques. The new 
techniques are better than the previous ones in the 
sense that they detect errors in all the branch-error 
categories.  We implemented the techniques in our 
dynamic binary translator so that the techniques can 
be applied to existing x86 binaries transparently.  We 
compared our new techniques with the previous ones 
and we show that our methods cover more errors while 
has similar performance overhead.  

1. Introduction

Transient faults, also called soft-errors or single-
event upsets (SEUs), are intermittent faults that do not 
occur consistently. Generally, these faults are caused 
by external events such as neutron and alpha particles 
striking the chip or power supply and interconnect 
noise [5]. Although these faults do not cause 
permanent damage, it may result in incorrect program 
execution by altering signal transfers or stored values. 

High-availability systems and safety-critical 
applications, such as spacecraft, airplanes and 
automotive control, are very sensitive to errors. Faulty 
behavior in these systems may lead to injury or 
damage to property. Therefore they must be reliable, 
and are generally designed to tolerate faults. Although 
soft-errors have been mainly addressed in this domain, 
new trends in general purpose microprocessor 
manufacturing have pushed these faults under the spot 
light.  

Transistors are becoming increasingly smaller, 
faster, and with tighter noise margins, which make 

processors more susceptible to soft-errors [14]. In fact, 
soft-errors are already changing the way industry looks 
at processor design. Sun Microsystems lost a major 
customer to IBM due to server crashes caused by soft-
errors [3]; and the fear of cosmic ray strikes led Fujitsu 
to use some form of error detection [2] to protect 80 
percent of the 200,000 latches in its recent Sparc 
processor.

Most modern microprocessors already incorporate 
certain mechanisms for detecting soft-errors. Memory 
elements, particularly caches, are protected by 
mechanisms such as error-correcting codes (ECC) and 
parity. The protection is typically focused on memory 
because the techniques are well understood and do not 
require expensive extra circuitry. Moreover, caches 
take up a large part of the chip area in modern 
microprocessors. 

Recent studies [14] show that in the near future the 
soft-error rate in combinational logic will be 
comparable to that of memory elements, and protecting 
the entire chip, instead of only the memory elements, 
will be in the top of the designers to do list.  

Several works have investigated redundancy 
techniques to provide soft-errors reliability in 
combinational logic [9, 10, and 15]. Hardware based 
approaches generally rely on inserting redundant 
hardware such as duplicating functional units or even 
the entire processor. As an alternative to hardware 
approaches, software-based techniques change only the 
software, and the reliability comes free of cost (except 
for the performance loss). Moreover, the software-only 
approach can be applied to off-the-shelf processors. 

In software-based techniques, the reliability is 
generally achieved by combining data-flow and 
control-flow checking techniques. Data-flow checking 
techniques rely on redundant computation by 
replicating instructions.  On the other hand, control-
flow checking is usually performed by comparing a 
run-time signature with a pre-computed one. 

This paper focus on control-flow checking to detect 
a special class of errors called control-flow errors,
which occur when a processor jumps to an incorrect 
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next instruction due to a soft-error. We propose a 
control-flow error classification and two software-
based comprehensive control-flow checking 
techniques that can detect all the errors in the 
classification. We also discuss variations of the 
techniques, which trade off performance and delay to 
report the fault. The techniques are implemented in our 
dynamic binary translator, which innovate by allowing 
legacy code to make transparent use of software-based 
reliability techniques. 

Section 2 depicts the control-flow error 
classification. Section 3 describes related works and 
the new control-flow checking techniques. Section 4 
formalizes the control flow checking problem and 
provides a formal proof that our control flow checking 
techniques can detect any single control-flow error. 
Section 5 presents the dynamic binary translator and 
the implementation of the control-flow checking 
techniques. Section 6 shows the experimental results, 
and Section 7 concludes the paper. 

2. Control-Flow Errors 

A control-flow error is a deviation from the 
program’s normal instruction execution flow. This 
error can be a result of a fault in the target address, 
branch flags, or even a change in the instruction 
pointer (IP) register due to external interference [11]. 
We classify the control-flow errors into two main 
categories:

Branch-error: when the error occurs in a branch 
instruction (mistaken branch, or branch to a 
random address, due to an error in the branch flag 
or in the target address). Although the error occurs 
at the branch instruction, it could be caused by 
instructions executed earlier than the branch 
instruction, such as instructions that generate the 
flags which affect the branch instruction. 
Non-branch-error: when the error occurs in a non-
branch instruction due to a change in the 
instruction behavior or in the IP register. 

Some non-branch-errors are very hard to cover with 
software-based control-flow reliability techniques. For 
example, take the instruction: a=a+c. If after executing 
this instruction the IP points to the same instruction 
and executes it again, the fault generates an error. 
Data-flow check techniques can detect this error by 
comparing the value of “a” with a redundantly 
computed value, but we cannot detect it by checking 
only the control-flow. Therefore, we will assume that 
these errors can be detected by data-flow checking or 
other means, and concentrate our efforts on branch-
errors.

When a fault occurs in a branch instruction, the 
control-flow can be deviated to any point in memory. 
Most of modern processors have memory access 
protection mechanisms that can detect when the 
processor tries to execute instructions from non-code 
regions. The execute disable bit is an example of such 
feature in the new generations of Intel processors. 
Therefore, jumps to memory regions that do not 
contain code can be detected by the hardware and 
handled by the operation system. Self modifying code 
can also be an issue, but we will see that our dynamic 
binary translator can easily handle it.

On the other hand, control-flow deviations that 
reach the application code are not detected by these 
memory protection mechanisms; and these errors can 
produce silent data corruption (SDC) [8], which can 
cause the program to generate a wrong output.  

In order to evaluate the error coverage of software-
based control-flow error checking techniques, we 
propose a branch-error classification, where we divide 
the errors into six categories. Figure 1 depicts the 
branch-errors categories in a control-flow graph. The 
solid lines show the correct control-flows and the 
dashed lines represent the different categories of 
branch-errors.

BB 1

BB 3BB 2

BB 4

A

D

F

C B

E

Figure 1 - Branch-error categories. A: mistaken 
branches. B: Jump to the beginning of the same 
basic block. C: Jump to the middle of the same 
basic block. D: Jump to the beginning of other 

basic block. E: Jump to the middle of other basic 
block. F: Jump to a non-code memory region. 

The branch-error categories in Figure 1 are 
classified according to the target. Category A 
represents the mistaken branches, in other words, the 
errors occur when the branch was supposed to jump, 
but falls through (or vice-versa). Categories B and C 
are characterized by errors that change the control-
flow to the same basic block of the branch instruction; 
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the only difference is that category B represents jumps 
to the beginning of the basic block, and category C 
represents jumps to the middle (including the end) of 
the basic block. The same analysis used in categories B 
and C are applied to categories D and E, but in this 
case the errors change the control-flow to different 
basic blocks. Category F represents the control-flow 
errors that jump to a non-code memory region. As we 
stated before, errors in this category can be detected by 
memory access protection mechanisms.   

In order to determine the importance of each 
branch-error category, we propose an error model to 
measure the probability for an error to occur at a 
branch-error category. We implemented the error 
model in our dynamic binary translator (described in 
Section 5) and evaluated the branch-error probabilities 
using the SPEC2000 benchmark. 

The error model assumes a soft-error that results in 
1 bit change in the address offset of the branch 
instruction or in the flags that determine the 
conditional branches direction. We consider that each 
bit in the address offset and in the flags has the same 
error probability. 

Indirect branches generally have their target 
determined only at runtime. In order to compute the 
error probabilities in these instructions we have to 
modify the application code to analyze the bit errors in 
the branch target address every time the instruction is 
executed. Since, on the average, the execution 
frequency of indirect branches represents less than 5% 
of the total branches execution frequency, we simplify 
the analysis by not accounting the errors in these 
branches.

Given that soft-errors are temporal errors, we have 
to take into account the execution frequency of each 
instruction. The taken and not taken ratio is also 
important. When a conditional branch is not taken, a 

fault in the address offset does not change the normal 
control-flow, therefore it is not treated as an error. 
Considering this, we divide the error probabilities into 
taken and not taken. We also subdivide the errors into 
addresses and flags. Figure 2 shows the branch-error 
probabilities for the integer and the floating-point part 
of the SPEC2000 benchmark suite.  

 Accordingly to the error model, if we look at the 
SPEC-Int benchmark and assume a 1 bit fault at a 
branch instruction, the probability for an error in 
category A to occur is 4.6%. Faults in the flags when 
the branch is not taken are responsible for 2.74% of 
these errors.

Figure 3 - Branch-error probabilities for categories 
A, B, C, D, and E.  

Most of the faults generate errors in category F or 
do not lead to errors. Since the memory protection 
systems can detect the errors in category F and we are 
not interested in faults that do not generate errors, we 
focus our attention to errors in categories A to E, in 
other words, the errors that may lead to silent data 
corruption. Figure 3 shows the branch-error 
probabilities when considering only these categories. 

Notice that most of the errors are in category E, 
followed by category A. Categories C and D have 
different behavior in the SPEC-Int and the SPEC-Fp 
benchmarks. Given that the floating-point applications 

Error Probability Branch-error 
Category SPEC-Int SPEC-Fp 

A 20.70% 17.33%
B 0.41% 0.03%
C 2.22% 16.98%
D 4.04% 1.52%
E 72.62% 64.14%

Total 100.00% 100.00% 

Figure 2 - Branch-error probabilities for the SPEC-Int and SPEC-Fp 2000 benchmarks. 

SPEC-Int 2000 SPEC-Fp 2000 
Taken Not taken Taken Not taken Branch-error 

Category 
Addr. Flags Addr. Flags 

Total
Addr. Flags Addr. Flags 

Total

A 0.11% 1.75% 0.00% 2.74% 4.60% 0.15% 3.65% 0.00% 1.83% 5.63% 
B 0.09% 0.00% 0.00% 0.00% 0.09% 0.01% 0.00% 0.00% 0.00% 0.01% 
C 0.49% 0.00% 0.00% 0.00% 0.49% 5.52% 0.00% 0.00% 0.00% 5.52% 
D 0.90% 0.00% 0.00% 0.00% 0.90% 0.49% 0.00% 0.00% 0.00% 0.49% 
E 16.13% 0.00% 0.00% 0.00% 16.13% 20.84% 0.00% 0.00% 0.00% 20.84% 
F 16.23% 0.00% 0.00% 0.00% 16.23% 28.46% 0.00% 0.00% 0.00% 28.46% 

No Error 0.00% 4.43% 50.95% 6.17% 61.56% 0.00% 5.44% 29.97% 3.64% 39.05% 
33.95% 6.19% 50.95% 8.91% 55.47% 9.09% 29.97% 5.47% 

Total
40.14% 59.86% 

100.00%
64.56% 35.44% 

100.00%
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have big basic blocks, the probability of error in 
category C is higher than category D in the SPEC-Fp 
benchmark. 

3. Control-flow Checking Techniques 

Control-flow checking is usually performed through 
signature monitoring. The basic idea is to detect errors 
by comparing a run-time signature with a pre-
computed one. Although some works have used 
hardware to assist the checking, we focus on the 
software-only techniques.  

Alkhalifa et al. [1]  proposed the Enhanced Control-
flow Checking using Assertions (ECCA). This 
technique modifies the source code inserting a test 
assertion in the beginning of every basic block to 
check the signature, and a set assignment in the end to 
update the signature to the next basic blocks. The 
technique use expensive instructions (div and mul) to 
check and update the signature, and cannot detect 
control-flow errors in category A.

 The control-flow checking by software signatures 
[12] (CFCSS) assigns a signature to each basic block, 
and uses a shadow PC register (PC’) to track these 
signatures and to detect the errors  in the control flow. 
PC’ is implemented using a general purpose register 
that always contains the signature for the currently 
executing block. Upon entry to any block, the PC’ is 
xor’ed with a statically determined constant to 
transform the previous block’s signature into the 
current block’s signature. After the transformation, the 
PC’ can be compared to the basic block signature. The 
CFCSS technique requires that common predecessor 
blocks have the same signature. Due to this restriction, 
the technique cannot detect errors in categories D and 
E if the correct and the wrong target have the same 
signature. Since the signature is updated only at the 
beginning of the basic block, errors in category C also 
cannot be detected. Finally, the CFCSS technique 
updates the current basic block signature using the 
predecessor basic block signature; therefore, the 
successors of a branch basic block cannot distinguish 
if the last branch was mistaken. Consequently, errors 
in category A are not detected. 

The ECF (enhanced control-flow checking), 
proposed by Reis et al. [13], extends the CFCSS 
technique with a run-time adjusting signature (RTS). 
They innovate by introducing a conditional signature 
update, so that predecessor or successor basic blocks 
are not required to have the same signature. Figure 4 
shows an example of the ECF technique using the 
“cmovle” instruction to update the RTS accordingly to 
the next basic block. 

1: xor PC’, RTS
2: cmp PC’, L0 
3: jnz .report_error 
…
4: cmp R1’, R2’ 
5: mov RTS, L0_to_L1 
6: mov AUX, L0_to_L2 
7: cmovle RTS, AUX 
8: cmp R1, R2 
9: jle BB2 

BB1h

BB1t

BB 1 (L0)

Figure 4 - ECF technique applied to a basic block 
with signature L0.  

The conditional signature update in ECF fixes 
limitation of the CFCSS technique of not being able to 
detect errors in categories A, D and E. To the best of 
our knowledge, this is the first technique to cover all 
the branch-errors in categories A, B, D, and E, which 
represents the best error coverage when considering 
the experimental results with our error model. 
Although the technique covers most of the categories, 
it still cannot detect errors in category C, which 
represents 16.98% of the potential errors in the SPEC-
Fp 2000 benchmark. 

In order to detect the errors in all the branch-error 
categories we propose two new comprehensive 
control-flow checking techniques: the first is the Edge 
control-flow checking technique (EdgCF) and the 
second is the Region based control-flow checking 
technique (RCF). 

3.1. The Edge Control-Flow Checking 
Technique

The main idea behind the Edge Control-Flow 
(EdgCF) Checking Technique is to update the PC’ 
register with the next basic block signature in the end 
of the current basic block and check it in the beginning 
of the next one. Figure 5 shows an example of PC’ 
being updated and checked. Instruction 5 updates the 
PC’ with the next basic block signature. L1_to_L2 is a 
constant that when xor’ed with L1 generates L2. 
Instructions 1 and 2 check PC’. 

Notice that the example in Figure 5 still does not 
detect errors that jump to the middle of the correct 
target basic block. If, due to a fault, instruction 7 
branches directly to instruction 4, the execution skip 
instructions 1 to 3, then the code will not detect the 
error.
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BB 1 (L1)

BB 2 (L2)

...
5: xor PC’, L1_to_L2
6: cmp ...
7: jmp BB2

1: cmp PC’, L2
2: jnz .report_error
3: add ...
4: sub ...

Figure 5 - PC’ update and branch error example. 

The undetected error in Figure 5 occurs because the 
control-flow jumps between two points that have the 
same signature (L2). In order to detect this kind of 
error we also update the signature in the beginning of 
the basic block. Figure 6 shows the EdgCF technique 
updating PC’ in the beginning of the basic blocks. 

1: xor PC’, L1 
2: cmp PC’, 0 
3: jnz .report_error 
…
5: xor PC’, L2 
6: cmp … 
7: jmp BB2 

1: xor PC’, L2 
2: cmp PC’, 0 
3: jnz .report_error 
4: add … 
5: sub …

BB 1 (L1)

BB 2 (L2)

BB1h

BB1t

Figure 6 - PC' updated in the beginning of the basic 
blocks. 

The EdgCF technique modifies PC’ so that between 
two basic blocks (in the control-flow edges), the PC’ 
contains the correct next basic block signature, and in 
the middle of the basic blocks it contains zero. The 
technique is able to detect the fault that makes 
instruction 7 in BB1 jumps to the middle of BB2 in 
Figure 6 (similar to the jump in Figure 5). Although 
this fault skips the checking code in BB2, the PC’ 
value will also be wrong in the next basic block, and 
the next checking code will detect the error. 

To update PC’ at the end of the basic block, we 
need to consider the following cases: 

If the basic block has only one successor: we 
insert an instruction to transform the current value 

of PC’ (zero) to the new value (the successor basic 
block signature). 
If the basic block has a conditional branch: we use 
conditional instructions (such as predicated 
instructions, or conditional branches) to update the 
signature accordingly to the next basic blocks.
If the basic block has a dynamic branch, such as 
an indirect jump, a call, or a return instruction: we 
generate code to get the dynamic target address 
and map it to the target basic block signature. To 
avoid the cost of mapping the address to the 
signature, we use the address of the first 
instruction in a basic block as the basic block 
signature. This is very convenient, since in this 
way we always have unique signatures, and the 
address to signature mapping has no cost.  

In the IA-32 architecture, the return (“ret”) 
instruction is an implicit dynamic branch. This 
instruction pops the target address from the stack and 
branches to it. Figure 7 shows the EdgCF technique 
code to update PC’ in the end of a basic block when it 
has a “ret” instruction. Instruction 5 copies the target 
address to register R1, and instruction 6 changes PC’ 
accordingly to the next basic block using R1.

BB 1
... 

6 :  xor PC’, R1
7 :  ret

5 :  mov R1, [RSP]

Figure 7 – PC’ updated in the end of a basic block 
with a dynamic branch (“ret” instruction). 

Figure 8 shows an example of a basic block with a 
conditional branch. Instructions 6 to 10 update the PC’ 
(using the conditional move instruction-“cmov”) to the 
next basic block signature (L1 or L2) accordingly to 
the branch condition (note that we assume that the xor 
instruction won’t change the flag set by the cmp 
instruction at 6.  We will address this issue late).  

The example in Figure 8 uses a branch instruction 
to report the detected error. This instruction is a new 
potential source of branch-errors, but the EdgCF and 
the previous techniques do not handle the potential 
errors properly. Notice that if, due to a soft-error, 
instruction 3 jumps to another basic block, the 
technique still detect the error, but if the control-flow 
deviation is to the middle of the same block, the 
techniques will not detect it.  since the PC’ will remain 
zero according to our single error model.   The ECCA 
technique [1] uses the “div” instruction to check the 
signature. The technique generates two numbers and 
divides both so that if the signature is wrong, a 
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division by zero exception occurs. The divide by zero 
exception handler is modified to detect if the exception 
is a control-flow error or a pure divide by zero 
exception. Although the EdgCF technique can use the 
same approach to check the signature, the “div” 
instruction is very expensive, and the performance 
overhead would be prohibitive. To avoid this 
performance overhead and detect the potential branch-
error introduced by the new branch instructions, we 
proposed the Region Based Control-Flow Checking 
technique. 

BB 1 (L1)
1 : xor PC’, L1
2 : cmp PC’, 0
3 :   jnz .report_error
... 
6 :   cmp R1’, R2’
7 :   mov AUX, PC’
8 :   xor PC’, L2
9 :   xor AUX, L3
10:  cmovle PC’, AUX
11:  cmp R1, R2
12:  jle BB3

Figure 8 - Basic block with a conditional branch. 

3.2. The Region Based Control-Flow Checking 
Technique

In order to protect the execution from control-flow 
errors on the new branch instructions introduced in the 
basic block, we create a different region for each 
branch instruction, and a region for the original basic 
block instructions. We will call this approach Region 
based Control-Flow (RCF) Checking.  Figure 9 shows 
the RCF technique applied to the code in Figure 8. The 
region R1E represents the entrance of the basic block 
BB1. The signature checking code is placed in this 
region. Region R1 is assigned to the original basic 
block instructions and the regions that appear from 
instruction 9 to 12 (R2E and R2E/R3E) are result of 
the signature update code in the conditional basic 
block. The region R2E/R3E means that both R2E and 
R3E are valid signatures.  

Notice that the branch instruction introduced to 
check the signature is protected by region R1E. In 
other words, if a branch-error occurs in this branch 
instruction, and the instruction jumps to code out of 
this region, the signature will be wrong, and the 
technique will detect the error. We could assign a 
region for each instruction, and so increase the 
protection from non-branch-errors, but the 

performance cost and code footprint size would be 
prohibitive.  

We update PC’ in the end of basic blocks using the 
same approach in EdgCF technique.  

Figure 9 - Regions attributed to a basic block. 
Region R2E/R3E means that R2E and R3E are valid 

signatures. 

4. Correctness

In this section, we first formalize the control flow 
checking problem.  All the signature-based control 
flow checking techniques can be formalized in the 
same way.  The only differences between them are 
different signature generation function GEN_SIG and 
signature checking function CHECK_SIG.  Based on 
that, we give the sufficient and necessary conditions 
for the GEN_SIG and CHECK_SIG function in order 
to detect any single control-flow error without false 
positive.  The previous control flow checking 
techniques do not satisfy the sufficient condition.  
Therefore, none of them can detect all possible single 
control-flow errors.  We show that our EdgCF 
technique can detect any single control-flow error by 
proving that it satisfies both the sufficient and 
necessary condition.  At last, we also show that the 
GEN_SIG function in our EdgCF technique is among 
the simplest functions (hence the lowest overhead) that 
can satisfy both the sufficient and necessary condition. 

4.1. Control Flow Checking Problem 

To detect the control-flow errors on branch 
instructions, we must distinguish the following two 
different branch targets:

Definition 1:  The logic branch target is the branch 
target in the program semantic.  

Definition 2:  The physical branch target is the 
branch target in the program execution.  
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Without control-flow error, the logic branch target 
and the physical branch target are the same.  The 
control-flow errors lead to the mismatch between the 
logic branch target and the physical branch target.  So 
the goal of control-flow checking is to detect the 
mismatch between the logic branch target and the 
physical branch target.

To formalize the control-flow checking problem, 
we divide the program into basic blocks so that 
control-flow errors happen only at the end of a block.   
With basic blocks, we can represent each logic branch 
target as a basic block (e.g. using the beginning 
address of basic block).  However, we can not 
represent the physical branch targets as basic blocks 
because a control flow error may jump to the middle of 
a basic block. 

To handle the jump-to-the-middle problem, we 
further split each basic block B into two basic blocks: 
the head block Bh and the tail block Bt, as shown in 
Figure 10.  The head block Bh contains no instruction 
in block B.  (Although Bh contains no instruction in 
original block B, it may be instrumented with 
instructions for control flow checking, see section 4.2.)  
It only acts as the entry point of block B and falls 
through to the tail block (Bt).  The tail block Bt 
contains all the instructions in block B.  We should 
note that, the control flow error never happens on the 
fall-through edge Bh  Bt.  So the correct control 
flow B1  B2 becomes B1h  B1t  B2h  B2t, 
and the control flow error that B1 jumps to the middle 
of B2 can be modeled as B1h  B1t  B2t.  In this 
way, we can ignore the jump-to-the-middle problem 
and simply represent each physical branch target also 
as a basic block.   

Figure 10 - Split Basic Block. 

With the above treatment, we now can formalize 
any program execution path (including both the correct 

program execution paths and the program execution 
paths with control-flow errors) as follows: 

Definition 3: The program execution path is a 
sequence of basic blocks Bi, 0  i  n, where n is the 
number of blocks executed in the program, such that 
Bi+1 is the physical branch target of the last branch 
instruction of Bi.  Also for each basic block Bi, 0  i < 
n, there is a basic block Ti+1, which is the logic branch 
target of the last branch instruction of Bi.  In other 
words, Bi+1 is the basic block executed after Bi, and Ti+1
is the basic block that was supposed to be executed 
after Bi.

With definition 3, the control-flow checking 
problem is to answer the following question: 

niBT ii 0?,)( 11

4.2. Control Flow Checking Technique 

To solve the control flow checking problem, the 
signature-based control flow checking techniques  
instrument a signature generation function GEN_SIG 
at the exit of each (head and/or tail) block to generate a 
signature for the program execution path.  They also 
instrument a signature checking functions 
CHECK_SIG at the entry of each (head and/or tail) 
block to check the signature for control flow error 
detection.  

Different control flow checking techniques use 
different GEN_SIG and CHECK_SIG functions.   For 
example, in the EdgCF technique shown in Figure 6, 
the signature is computed and placed in PC’.  In block 
BB1, Instruction 1 belongs to the head block (block 
BB1h) and the rest instructions belong to the tail block 
(block BB1t).  At the exit of block BB1h, instruction 1 
generates the signature with:   

1'' LPCPC
At the exit of block BB1t, instruction 5 generates 

the signature with: 
2'' LPCPC

At the entry of block BB1t, instruction 2-3 checks 
the signature with: 

?)0'(PC
As another example, in the ECF techniques shown 

in Figure 4, the signature is computed and placed in a 
pair <PC’, RTS>.  In block BB1, Instruction 1 belongs 
to the head block (block BB1h) and the rest 
instructions belong to the tail block (block BB1t). At 
the exit of block BB1h, instruction 1 generates the 
signature with:   

RTSRTSPCRTSPC ,','

Instruction 1
B

Instruction 2
...
Instruction n

Bh

Bt
Instruction 1
Instruction 2
...
Instruction n

Fall Through

Basic Block After SplitOriginal Basic Block
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At the exit of block BB1t, instruction 4-7 generates 
the signature with: 

1__0,',' LtoLPCRTSPC
or

2__0,',' LtoLPCRTSPC
At the entry of block BB1t, instruction 2-3 checks 

the signature with: 
?)0'( LPC

4.3. Assumptions

To prove the correctness of the control-flow 
checking techniques, we have to make some basic 
assumptions on the following instrumentation-
dependent issues: 

Issue 1: The instrumented code itself is also 
susceptible to control-flow errors. 

Issue 2: A soft-error may change the control-flow 
so that it skips the instrumented code, thus escaping 
the checking. 

With Issues 1, a control flow error may jump to the 
middle of the instrumented code, whose effect is 
implementation-dependent.  Moreover, the 
instrumented code needs to be implemented with self-
checking if itself has control-flow error.  Here we do 
not consider those implementation details (although 
our RCF technique can handle the error in the 
instrumented branch instruction).  So we make the 
following assumption: 

Assumption 1: The instrumented function 
(GEN_SIG or CHECK_SIG) is an atomic unit such 
that either all or none of it is executed. 

Assumption 1 simplifies our later discussion.  
Based on our experience in IA32, the control flow 
errors that break the atomicity of GEN_SIG and 
CHECK_SIG function usually lead to the program 
fails (e.g. illegal instruction trap) or checking fails.  So 
the non-atomicity of these functions does not affect 
much to the control flow checking.  Moreover, the 
GEN_SIG function and CHECK_SIG function are 
typically implemented as simple as possible to reduce 
the checking overhead.  So the probability that a 
control flow error breaks the atomicity of these 
functions is small.    

With issue 2, if a control-flow error escapes all the 
instrumented checking functions, there is no way to 
detect the error.  So we have to make the following 
assumption: 

Assumption 2: A control flow error may skip 
CHECK_SIG functions.  However, any control-flow 
error must finally reach at least one CHECK_SIG 
function. 

4.4. Correctness Condition 

We denote the signature generated at the exit of 
block Bi and checked at entry of block Bi+1 as Si+1.  The 
signature checking function CHECK_SIG at the entry 
of block Bi+1 need to check Si+1 for control flow error.  
Therefore, the signature checking function at the entry 
of block Bi+1 should be in the form:

?),(_ 11 ii BSSIGCHECK
The signature Si+1 generated at the exit of block Bi

must depend on Ti+1 in order to detect the control flow 
error happens from Bi to Ti+1.  Moreover, with 
assumption 2, in order to detect all the control flow 
errors, one single CHECK_SIG function must be able 
to detect all the control flow errors along the whole 
program execution path.  So the signature Si+1 also 
need to recursively depend on the previous signature Si
to detect the control flow error happened in previous 
blocks.  Therefore, the signature generation function at 
the exit of block Bi should be in the form: 

),,(_ 11 iiii TBSSIGGENS
If we only consider the single-error along the 

program execution path, we can get the following 
sufficient condition for detecting any single control-
flow error: 

Sufficient Condition:

),(_

0,,,,0, 1111

nn

iijj

BSSIGCHECK
nijiBTBTnjj

The sufficient condition only guarantees that there 
is no false negative in the checking.  However, it may 
produce false positives.   To avoid the false positives, 
we need the following necessary condition: 

Necessary Condition:
),(_0,11 nnii BSSIGCHECKniBT

All the previous control flow techniques [1][12][13] 
satisfy the necessary condition.  Unfortunately, none of 
them satisfy the sufficient condition.  Therefore, none 
of them can detect all possible single control-flow 
errors.  Next we show that our EdgCF technique can 
detect any single control-flow error by proving: 

Claim 1: The GEN_SIG function and CHECK_SIG
function in EdgCF technique satisfies both the 
sufficient and necessary condition: 

Proof: First, if we represent each head block by the 
unique block address and each tail block by 0, the 
GEN_SIG and CHECK_SIG function in EdgCF 
techniques can be expressed as 
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)(),(_
),,(_

yxyxSIGCHECK
zyxzyxSIGGEN

   (4) 

To check (4), with block BB1 in Figure 6, we can 
derive: 

1')0,1,'(_
)1,1,'(_

LPCLPCSIGGEN
tBBhBBPCSIGGEN

2')2,0,'(_
)2,1,'(_

LPCLPCSIGGEN
hBBtBBPCSIGGEN

)0'()0,'(_
)1,'(_

PCPCSIGCHECK
tBBPCSIGCHECK

For simplicity, here we represent all the tail blocks 
by 0, which is not unique for each tail block.  This 
does not affect the correctness of our control flow 
checking technique because the control flow error 
never happens on the fall-through edge from a head 
block to a tail block (see section 4.1).   

Next, with formula (4) and S0 = B0, we can derive: 

),(_

0,

0011

11

nn

nnnnnn

ii

BSSIGCHECK
BTBSTBSS

niBT

And

),(_

0,,,,0,

1111

1111

nn

nnjjnnnn

iijj

BSSIGCHECK
BTTBTBSS

nijiBTBTnjj

�
For previous discussion, we know that the signature 

generation function GEN_SIG must change with Si, Bi
and Ti+1.   So the GEN_SIG function in (4) is among 
the simplest functions (hence the lowest overhead) that 
can satisfy both the sufficient and necessary condition.  
Another similar choice is GEN_SIG (x, y, z) = x - y + 
z, which also satisfies both the sufficient and necessary 
condition.  In real implementation, we actually use this 
function to avoid the EFLAGS problem in IA32 (see 
Section 5.1).  

5. Implementation

We implemented the control-flow checking 
techniques in our dynamic binary translator (DBT). 

The overall structure of the DBT is shown in Figure 
11. The DBT runs on top of OS as a user-level run-
time system.  The program binary code is dynamically 

translated and stored into the code cache. Then the 
translated code can be executed under the control of 
the DBT, which allows us to apply different dynamic 
binary translation techniques to the code, such as 
compatibility support, security checking, reliability 
enforcement, performance improvement, etc.  

The DBT consists of three individual modules: the 
Runtime module, the Frontend module and the 
Backend module. 

The Runtime module provides the system supports 
for the DBT.  It automatically loads the original 
program code into memory and initializes the program 
execution context at program startup.  To facilitate the 
program execution, it provides all OS interfaces such 
as I/O and system calls.  The Runtime module also 
handles all the system events such as OS call-backs, 
exception, dynamic library load, and code self-
modification, etc. 

Program Binary Code

Run Time Front End

Back End

Code 
Cache

DBT

OS

Control Flow Data Flow

Figure 11 - The dynamic binary translator overall 
structure. 

The Frontend module manages the whole program 
execution for dynamic binary translation.  It 
dynamically recognizes the original program 
instructions, translates them into instructions in the 
code cache using different dynamic binary translation 
techniques, and controls the code execution in the code 
cache.  For the system related features in the program, 
it interacts with the Runtime module to get system 
support.  To provide optimization to the dynamic 
binary translation, the Frontend module also collects 
program profiling information during the code 
execution and selects hot traces based on the profiling 
information for run-time optimization by the Backend.
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The Backend module performs run-time 
optimization for the dynamic binary translations.  It 
builds an intermediate representation (IR) from the hot 
traces selected by the Frontend module.  It then 
performs optimizations on the IR, and finally generates 
optimized code into the code cache to improve 
performance. 

In our experiments, we configured the DBT to 
translate IA32 [7]  to EM64T [6] binary code.  

The binary translation is done on demand, which 
means that every time a non-translated basic block has 
to be executed, the DBT takes control of the execution 
and translate the basic block. Therefore, only executed 
blocks are translated.

The code cache and the DBT code are placed in 
memory pages with the execute disable bit set to allow 
execution. This allows us to detect branch-errors in 
category F.

Self-modifying code is handled using the write
protection mechanism. Whenever the program 
modifies the original code, the processor raises an 
exception and the DBT takes control of the execution. 
After this, the DBT identifies and removes the 
outdated code that was previously translated from the 
modified code. As soon as the control flows to the 
modified code, DBT naturally translates it into the 
code cache as if it was never translated before. 

In order to implement the control-flow checking 
techniques, we insert instructions to check and update 
the signature in every translated basic block. Due to 
the translation on demand scheme, the CFG is changed 
during the execution; therefore, we do not implement 
the techniques that need the CFG to attribute 
signatures to the basic blocks, such as CFCSS and 
ECCA. The ECF, EdgCF and RCF techniques were 
implemented using the address of the first instruction 
in each basic block (region) as the signature number. 

5.1. EM64T Architecture Issues 

The control-flow checking techniques require 
dedicated registers for PC’, and for the runtime 
signature register (RTS) in the ECF technique. Since 
the EM64T architecture has more registers than the 
IA32 one, we do not need to spill registers to provide 
PC’ and RTS during the translation of IA32 programs 
to EM64 code.  

When modifying the binary, we have to make sure 
that the inserted instructions do not change the 
program behavior. Although the instructions to update 
the signatures only modify registers not used by the 
original program, the “xor” instruction implementation 
in the EM64T architecture modifies the EFLAGS 
register. Therefore, instead of using the “xor” 
instruction, we use load effective address (lea). The 
“lea” instruction does not have side-effects and has 
performance similar to the “xor” instruction. 
Moreover, it is a three address instruction, which 
allows us to save some instructions in the 
implementation. Figure 13 shows the usage of the 
“lea” instruction to update the signature. 

We implemented the signature checking using both 
the “cmov” and the branch instructions. The approach 
insert branches in the ECF and EdgCF techniques is 
unsafe, however, it provides a fair performance 
comparison with the RCF technique.  

The signature checking code must not generate 
side-effects as well. In order to check the signature 
without changing the EFLAGS, we use the jump if CX
is zero (jcxz) instruction. Figure 13 shows an example 
of the RCF technique checking the signature. 
Instruction 1 updates PC’ to R1C region. Instructions 2 
and 6 save and restore CX, and instructions 3 to 5 
check PC’. 

Figure 12 - Performance slowdown for the RCF, EdgCF and ECF techniques.
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Figure 13 - RCF technique checking the signature. 

6. Experimental Results 

The results were generated using an Intel Xeon 
machine with 3.6 GHz and 4GB of RAM. We 
executed the SPEC 2000 benchmark with the reference 
data set. The baseline results are the applications 
running on the DBT with no instrumentation. The 
average slow down from the native code to running on 
DBT is about 12%. 

Figure 12 shows the performance slowdown for the 
SPEC 2000 applications when applying the RCF, 
EdgCF and ECF techniques in the DBT. The left part 
of Figure 12 shows the SPEC floating point 
benchmarks and the right part shows the integer ones. 
The figure also shows the geometric mean for the 
floating point, the integer, and the entire benchmark. 
The techniques RCF, EdgCF, and ECF presented an 
average slowdown of 1.46, 1.41, and 1.39 times, 
respectively.

Notice that the performance slowdown is less 
dramatic in the floating point benchmarks. It happens 
because these benchmarks have large basic blocks 
and/or more time-consuming instructions (like floating 
point instructions).  

Since the RCF technique requires the signature to 
be updated more than twice in each basic block, it 
inserts more instructions per basic block than the other 
techniques. Therefore, this technique shows worse 
performance than the other two. The EdgCF and the 
ECF techniques insert the same amount of instructions 
per basic block. However, in the current ISA, the ECF 
uses cheaper instructions to update the signature, 
which leads to a slight performance difference.  

Although the RCF technique presented the worst 
performance, it has the best error coverage, since it can 
detect the errors in the branch instructions inserted to 
update and check the signatures. The EdgCF and ECF 
techniques can use safe instructions (like “cmov” and 
“div”) to update and check the signatures, but these 
instructions may lead to performance loss. We also 
implemented the control-flow techniques using the 
“CMOVcc” (conditional move) instruction to update 
the signature. Figure 14 shows the average 

performance slowdown for the SPEC 2000 benchmark 
when using the “Jcc” (conditional jump) and the 
“CMOVcc” (conditional move) instruction to update 
the signature. The shadowed area shows the unsafe 
configurations. 

Notice that the RCF technique using “Jcc” 
instructions, which is safe, almost beats the ECF 
technique when using “CMOVcc” instructions.

   
Figure 14 - Performance slowdown when using the 
“Jcc” and “CMOVcc”.  The shadowed cells indicate 
the techniques that are unsafe when implemented 

using the “Jcc” instruction to update the signature. 

The fail-stop model relies on the halt-on-failure
property [4]. Accordingly to this property, the error 
should be detected and the process stopped before 
writing permanent data or communicating with other 
processes. The existing software-based control-flow 
checking techniques, however, are not able to 
implement the halt-on-failure property, even if it 
checks the signature after each instruction. It happens 
because a branch-error can change the control-flow 
directly to an instruction that store data in the memory, 
and even if the error is detected immediately after the 
instruction, the stored data may be a communication 
with other processes or a permanent data write. For 
that reason, we assume a relaxed fail report model, 
where the error must be reported, but not necessarily 
before any data write or communication. 

As long as we are not required to report the error 
immediately, the control-flow checking techniques can 
be optimized for performance by not checking the 
signature at every basic block. Notice that the 
signature may not be checked, but it still has to be 
updated in every basic block. This is valid because if 
an error occurs, and the signature becomes wrong, 
each update to PC’ will also generate a wrong 
signature, therefore, if we consider only single errors, 
once the signature becomes wrong, it will always be 
wrong, and the signature can only be checked for 
correctness in the end of the program (or functions). 
As an example of optimization, Reis et al. [13] 
proposed checking the signature only in basic blocks 
that have store instructions. 

In order to evaluate the impact that signature 
checking has on performance, we implemented four 
signature checking policies in the control-flow 
checking techniques: 

Performance Slowdown Update
instruction RCF EdgCF ECF 

Jcc 1.46 1.41 1.39
CMOVcc 1.57 1.54 1.44 
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ALLBB: the signature is checked in every basic 
block. 
RET-BE: the signature is checked in basic blocks 
with back edges, and in basic blocks with return 
instructions. 
RET: the signature is checked in basic blocks with 
return instructions. 
END: the signature is checked only in the end of 
the application. 

The signature checking policies presentation is 
sorted by the signature checking frequency. Notice that 
the less frequently we check the signature, the more 
delay it can take to report the error. Moreover, a 
branch-error may lead the program to an infinite loop, 
and in the case of the RET and END policies, where 
the signature is not checked inside loops, the error may 
not be reported.  The RET-BE method places checks in 
the blocks that have back edges to help preventing 
infinite loops. Figure 15 compares the RCF technique 
performance when implementing the four signature 
checking policies. 

The performance improvement is higher in the 
integer benchmark than in the floating-point one. On 
the average, the performance slowdown dropped from 
77% to 37% when comparing the ALLBB to the RET-
BE policy in the integer benchmark, from 23% to 18% 
in the floating-point benchmark, and from 46% to 26% 
in the entire benchmark. Again, the difference in the 
performance improvement is because the floating-point 
benchmarks have large basic blocks and/or more time-
consuming instructions (like floating point 
instructions). 

The average performance slowdown is 46% for the 
ALLBB policy, and 16% for the END one. Since the 
END policy only checks the signature once, and the 
ALLBB policy check it in every basic block, we can 
see that the signature checking is responsible for a big 
share in the performance slowdown. Even though it is 
an impressive performance improvement, the END 

policy may not report branch-errors that lead the 
program to infinite loops. 

Although the RET policy checks the signature more 
frequently than the END one, both policies have 
similar performance. It happens because the programs 
spent most of the executing time in inner loops rather 
than calling and returning from functions.  

In our tests, the DBT itself was not modified to 
provide reliability. The binary translation time is very 
small compared to the application execution time. 
Therefore, we estimate that a reliable version of the 
DBT translator will not change significantly the total 
execution time. 

7. Conclusion and Future Work 

In this paper we study a special class of errors 
called control-flow errors. We proposed a new control-
flow error classification, a model to measure the 
branch-error probabilities, and two new control-flow 
checking techniques: the Edge Control-Flow and the 
Region Based Control-Flow checking techniques. We 
also formalized the control-flow checking problem and 
provided a proof that our control flow checking 
technique can detect any single control-flow error. 

We implemented the techniques in our dynamic 
binary translator and evaluate them using the 
SPEC2000 benchmark. The results show that the RCF 
technique can cover all the branch-errors, including 
those that occur at the conditional branch instructions 
inserted to update/check the signature, and the 
performance cost is very close or even better than the 
other techniques.  

In the future we will add data flow checking into 
our implementation and measure the overall 
performance impact.  We will also work on soft-error 
injection to measure the actual effectiveness of our 
techniques in detecting both control and data flow 
errors.
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