2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing

Energy-Performance Tradeoffs in Software Transactional Memory

Alexandro Baldassin, Jodo P. L. de Carvalho

UNESP — Univ Estadual Paulista, Rio Claro, Brazil
alex @rc.unesp.br, jaopaulolc @gmail.com

Leonardo A. G. Garcia
Linux Technology Center - IBM, Brazil
lagarcia@br.ibm.com

Rodolfo Azevedo
Campinas State University, Brazil
rodolfo@ic.unicamp.br

Abstract

Transactional memory (TM) is a new synchroniza-
tion mechanism devised to simplify parallel programming,
thereby helping programmers to unleash the power of cur-
rent multicore processors. Although software implementa-
tions of TM (STM) have been extensively analyzed in terms
of runtime performance, little attention has been paid to
an equally important constraint faced by nearly all com-
puter systems: energy consumption. In this work we con-
duct a comprehensive study of energy and runtime tradeoffs
in software transactional memory systems. We character-
ize the behavior of three state-of-the-art lock-based STM
algorithms, along with three different conflict resolution
schemes. As a result of this characterization, we propose a
DVFS-based technique that can be integrated into the res-
olution policies so as to improve the energy-delay product
(EDP). Experimental results show that our DVFS-enhanced
policies are indeed beneficial for applications with high
contention levels. Improvements of up to 59% in EDP can
be observed in this scenario, with an average EDP reduc-
tion of 16% across the STAMP workloads.

1. Introduction

Excessive power consumption and microarchitectural
limitations have reshaped the microprocessor industry,
bringing multicore architecture and parallel programming
into the mainstream. Despite the fact that multicore hard-
ware is everywhere, successfully writing concurrent appli-
cations that can make the most out of the available paral-
lelism is still a gift reserved to a few. The common belief
is that existing languages and tools are inadequate, and new
programming models and tools must be developed with par-
allelism in mind [28].

Transactional Memory (TM) [14] is a novel abstraction

1550-6533/12 $26.00 © 2012 IEEE
DOI 10.1109/SBAC-PAD.2012.19

147

that has the potential of simplifying parallel synchroniza-
tion, thereby helping programmers to harness the power
of multicore processors. While standard synchronization
methods rely on locks and condition variables, the transac-
tional model offers the concept of a transaction: a sequence
of code that is executed atomically. As a result, program-
mers are freed from the burden of devising complicated
locking protocols and are primarily responsible for identify-
ing the atomic blocks. TM systems can be implemented en-
tirely in software (STM), using hardware resources (HTM),
or as a combination of both (HyTM). The rest of this paper
focuses on STM.

There has been a lot of research on STM algorithms and
implementations over the last few years, with performance
being a major concern [3, 7]. Although execution time is an
important constraint, power consumption has also become a
primary restriction for nearly all computer systems. In em-
bedded computing it directly affects battery lifetime, while
thermal issues are a key limitation in desktop and server
systems [16]. However, little is known about energy con-
sumption in STM systems.

In this work we present a thorough investigation of
energy and performance tradeoffs in STM systems. Us-
ing a cycle-accurate MPSoC simulation platform [22] and
the STAMP benchmark [23], we perform a detailed study
of runtime and energy consumption in STM systems by
covering a large portion of the transactional design space
(encounter-time versus commit-time locking, eager versus
lazy versioning) and contention management policies (sui-
cide, backoff and delay). We also show how dynamic volt-
age and frequency scaling (DVFS) [16] can be combined
with contention managers in order to improve both energy
efficiency and performance.

More specifically, the main contributions of this paper
are:

e a detailed characterization of three state-of-the-art
lock-based STM algorithms and three conflict reso-

IEEE
computer
psouety

lution policies using the STAMP benchmark suite.
Our experiments show that the encounter-time locking
with lazy versioning algorithm, along with the suicide
policy, provided the best overall energy/performance
compromise for the STAMP workloads;

a DVFS-based methodology that can be integrated into
conflict resolution policies to improve both energy
consumption and runtime performance. We evaluated
our methodology with the backoff and delay policies,
and both provided significant gains for applications
with high contention levels. Our results show an EDP
reduction of 16% across the STAMP applications with
regard to the best previously analyzed policy (suicide).

The rest of this paper is organized as follows. Section 2
describes the STMs and resolution policies employed in our
study. Section 3 introduces the simulation platform and
transactional applications and configurations, while Sec-
tion 4 presents the characterization of the STM algorithms
and policies. Section 5 explains our motivation for using
DVFS and shows the experimental results obtained with its
use. Finally, Section 6 discusses related works and Sec-
tion 7 concludes the paper.

2. STM Design Space

There have been a plethora of STM designs proposed
since the seminal work of Shavit and Touiou [27]. On a
more abstract level, the algorithms can be divided into two
broad categories: blocking and non-blocking. In this work
we concentrate on blocking designs since they are very pop-
ular and considered to have superior performance than non-
blocking alternatives [6, 7]. Harris et al. [14] provide a
comprehensive study on the design space of transactional
memory in general.

Blocking algorithms rely on some sort of locking proto-
col to control the access to shared memory. The granularity
of the data protected by a lock may be a single location or an
entire object. The main choices that need to be considered
in the design of a lock-based STM are: (i) the moment in
which a location is locked; (ii) how data versioning is han-
dled. Commit-time locking (CTL) algorithms acquire the
locks for the accessed locations during the commit phase,
while in encounter-time locking (ETL) systems the lock is
acquired when a location is first accessed. A transactional
system may also store the speculative data in a local buffer
(lazy versioning) or directly in shared memory (eager ver-
sioning).

In this paper the following designs are considered:

e COTL — commit-time locking with lazy versioning '.

'Notice that CTL cannot provide eager versioning, since the locks are
only acquired during the commit operation.

148

The TL2 algorithm [5] is the main representative of
this design class;

e ETL; — encounter-time locking with lazy versioning,
popularized by TinySTM [8];

e ETL.—encounter-time locking with eager versioning,
first analysed by Saha et al. [25].

Another important design choice for any STM system is
the resolution policy employed in case of conflicts. A con-
flict occurs when two or more transactions access the same
location and at least one of them performs a write access.
The contention manager is the STM module responsible for
choosing a strategy to resolve the conflict. The following
policies are used in our evaluation:

e SUICIDE - the transaction that detected the conflict
is aborted and immediately restarted;

BACKOFF — an adaptive backoff mechanism [1] is em-
ployed to delay the restart of a transaction after it is
aborted. The delay is increased exponentially after ev-
ery restart;

DELAY — before restarting, the aborted transaction
waits for the lock that caused the conflict to be re-
leased.

Common to all the studied policies is the fact that the
transaction that detects the conflict is aborted. They mostly
differ in the actions taken before the transaction is restarted.
While SUICIDE does not perform any further action (the
transaction is restarted immediately), BACKOFF waits an
exponentially increasing time before restarting and DELAY
waits for the contention on the lock responsible for the con-
flict to disappear. The main idea behind both BACKOFF and
DELAY is that, by waiting for certain events to happen, the
probability of finding another conflict upon retry is reduced.

3. Simulation Platform and Applications

The results presented in this paper have been collected
using a cycle-accurate MPSoC simulation platform [22],
whose overall organization is depicted in Figure 1. The
simulation platform allows a variable number of ARMv7
processors to be instantiated, each one with segregated in-
struction and data caches. Each core has also access to a
external private memory by means of a interconnection net-
work, which is also connected to a global shared memory
and a hardware semaphore module. The platform provides
accurate power models for each component, characterized
on a 0.13-um technology by STMicroelectronics and vali-
dated on silicon. It has also been used by others to show

Core n

[18 [os]

i

BUS

{

Semaphore
Module

D

{

Private Private Shared
Memory 1 Memory n Memory

Figure 1. Simulation platform.

Component

Processor

L1 instruction cache

L1 data cache

Private and shared memory
Bus

Configuration

ARMv7 @200MHz

8KB, 4-way set associative
4KB, 4-way set associative
16MB each, SRAM
AMBA AHB

Table 1. Platform configuration used in the
experiments.

the energy and performance impact of multiprocessor sys-
tems [21, 9, 2].

The precise configuration for the platform used in our ex-
periments is given in Table 1. Since the simulated ARMv7
processors do not provide the compare-and-swap (CAS) in-
struction needed by the STM algorithms, it is implemented
through a semaphore-based test-and-set operation (provided
by the semaphore hardware module). Also, the memory
architecture of the platform is based on SRAM and, con-
sequently, has lower latency and is more energy-efficient
compared to DRAM. As can be noticed, the platform con-
figuration is typical of embedded systems.

The transactional applications used in our evaluation are
taken from the STAMP benchmark suite [23]. They charac-
terize different transactional scenarios with regard to trans-
action length, read and write set sizes, transaction time and
contention level. The arguments for each application are the
recommended for running in simulation environments, and
are reproduced in Table 2.

The STM implementation used in our experiments is
based on the publicly available distribution of TinySTM [8],
version 1.0.3. The algorithm variations (CT L, ETL;, and
ETL,) and basic resolution policies (BACKOFF, DELAY,
and SUICIDE) are already provided with TinySTM. To val-
idate our experiments, the results produced by each applica-
tion in the simulation environment are checked against the
output generated by the same application (and input set) on
an x86 machine.

149

Application Arguments
Bayes -v16 -r1024 -n2 -p20 -i2 -e2
Genome -g512 -s32 -n32768
Intruder -al0 -116 -n4096 -s1
Kmeans -m15 -n15 -t0.05 -i random-n2048-d16-c16
Labyrinth -i random-x48-y48-z3-n64
SSCA2 -s13-i1.0 -ul.0 -13 -p3
Vacation -n2 -q90 -u98 -r16384 -t4096
Yada -a20 -1 633.2
Table 2. Application configurations.

4. Characterization

In order to present the performance and energy charac-
teristics of the different STM designs and policies we pro-
ceed as follows. First, we study the scalability and en-
ergy efficiency as the number of cores is increased from
1 to 8. For this study we focus on the ET'L; design with
SUICIDE, as it is a popular configuration (for instance, it
is the default configuration for TinySTM 1.0.3). Second, we
perform a comparative analysis showing the advantages and
disadvantages of each design and policy, for each STAMP
application.

4.1 Energy versus Speedup

Transactional memory systems have been traditionally
evaluated using performance metrics such as transaction
throughput and execution time. Although energy consump-
tion is proportional to execution time, it is not always trivial
to infer one from the other. In order to understand the rela-
tionship between energy and performance of transactional
applications, we present in this section an analysis using
an STM with the ET'L; design and the SUICIDE policy,
whose behavior is characterized in Figure 2.

Notice that, while energy consumption invariably in-
creases with the number of execution cores, the speedup
numbers depend on the application. For instance, appli-
cations Genome, Kmeans, Labyrinth, SSCA2, and
Vacation display better performance as more cores are
added. On the other hand, Bayes, Intruder, and Yada
exhibit a performance loss when the number of cores is in-
creased from 4 to 8. This behavior is mostly due to a high
contention level reached by these applications when 8 cores
are used, causing many transactions to abort repeatedly.

Furthermore, observe that the decrease in performance
experienced by Bayes, Intruder, and Yada is closely
related to the growth in the energy consumed. For ex-
ample, Intruder speedup decreased by 50% (from 2x
to 1.5x) while its energy consumption increased by 100%
(from 1.5x to 3x). The configuration with 2 cores provides
roughly the same performance with less than half the energy
consumed. Conversely, applications with good speedups
provided excellent energy savings, as can be noticed by

g <]
L 5 <] S o O
o g i~ § IS4 s
el & = A7 ~ & ~ ~
45 - - - - 45
& 4 4
g8 35 35
53] w2
< 3 3008
o
S 25 25 &
<)
g 2 o 2
o
zZ 15 , H - H ; H 15
Ld e s oo T gall- It 1

1248 1248 1248

1248

Cores

1248 1248 1248 1248

Energy == Speedup ‘

Figure 2. Energy and speedup. The values are for £7'L; with SUICIDE and are normalized wrt the

respective transactional single-core execution.

Kmeans: the 8-core configuration displays a 4.2x speedup
with only 15% of additional energy.

As especially evidenced by Intruder and Yada, when the
contention level increases the amount of energy wasted is
high. We revisit this problem in Section 5, offering a DVFS-
based mechanism to alleviate the pressure on energy con-
sumption and increase the performance.

4.2 Comparative Study

In the previous Section (4.1) we analyzed the energy and
speedup behavior of the STAMP applications using a single
STM configuration. In order to gain a better understand-
ing of the STM design space, we conduct in this section a
comparative investigation of the different transactional al-
gorithms and policies presented in Section 2.

Figure 3 shows the energy and execution time for the
three STM algorithms (CTL, ETL;, and ET L.) and poli-
cies (BACKOFF, DELAY, and SUICIDE). We only present
results for the 8-core configuration for two main reasons:
(1) to avoid cluttering the figure, thus simplifying the pre-
sentation; (ii) as Figure 2 shows, it is with 8 cores that ap-
plications start to exhibit contention and, consequently, it is
in this scenario that the influence of a given algorithm and
resolution policy is more evident. The energy and execu-
tion time values are also normalized to the ET'L; SUICIDE
configuration. Therefore, if the normalized value for a given
design is smaller than 1, the design is better than ET'L;
SUICIDE. Otherwise (bigger than 1), it is worse.

We start by analyzing the relationship among the algo-
rithms ETL;, CTL, and ET L., highlighting some key dif-
ferences among the resolution policies when necessary. For
applications Bayes, Kmeans, Labyrinth, Genome,
SSCAZ2, and Vacation, it is not possible to select a clear

150

winner, since their results are similar (overall differences
are smaller than 5%). Nonetheless, some observations are
noteworthy. First, SSCA2 suggests that ET' L. is more ef-
ficient than both ET'L; and C'T'L in terms of energy and
execution time. Second, a small energy and performance
loss can be observed in Genome with the C'T'L design, al-
though the execution time of Vacation seems to benefit
from it.

The advantages and drawbacks of the transactional al-
gorithms are more evident in Intruder and Yada. In
Intruder, the CTL design shows the worst performance,
while ET'L; and E'T' L, exhibit comparable results. It is ev-
ident from Figure 3 that BACKOFF is by far the less attrac-
tive policy for Intruder. For this application, a simple
policy such as SUICIDE provided the best results, since
the transactions are very small and it is preferable to restart
a transaction immediately than providing a more sophisti-
cated resolution scheme.

The results for Yada indicate that the BACKOFF policy
did not provide any benefit for ET'L; and ET L., although
it did perform very well with the CTL algorithm. Since
transactions in Yada are large, postponing the acquisition
of the locks until commit time has the potential to reduce the
number of conflicts. As the results show, all CT'L policies
responded very well. Once more, the SUICIDE scheme
presented the best results for Yada.

Overall, it is safe to say that the ETL; algorithm and
the SUICIDE resolution policy provided the best results.
One exception is SSCA2, in which the ETL. algorithm
provided a small advantage in terms of energy and perfor-
mance. Due to the results presented in this section, we focus
our attention exclusively on the ET'L; algorithm in the rest
of this paper.

BACKOFF == DELAY

== SUICIDE]

Bayes
1.1
&
g 1.05
53}
=
8
3 1
g
=]
Z
0.95
0.9
CTL ETL, ETL,
Intruder
25
)
z \
3 2
8
3
g
=]
Z 15
1
CTL ETL, ETL,
Labyrinth
11
. 105
g
=
o
3 1
S
3
-
2 095
0.9
CTL ETL, ETL,
Vacation
11
1.05
el
B
g 1
=
8
T 095
15
Z
0.9
0.85
CTL ETL,

ETL,

—_

o
b

4
o
G

o
=)

N
wn

8]

n

1.05

0.95

0.9

1.05

0.95

0.9

0.85

SI[94D UOTINOAXF PAZI[BULION

SO[OAD UONNIIXF PIZI[BULION

SI[OAD UONNDIXF PIZI[EULION

SI[OAD UONNDIXF PIZI[BULION

Normalized Energy Normalized Energy

Normalized Energy

Normalized Energy

1.15

1.05

0.95

0.9

=3
b

o
N
S

0.9

—_

=3
b

o
©
S

4
o

1.8
1.7
1.6
1.5
1.4
1.3
1.2

0.9

Genome
\\IiI

CTL ETL, ETL,
Kmeans

CTL ETL, ETL,
SSCA2

CTL ETL, ETL,

Yada
N
CTL ETL, ETL,

1.15

1.05

0.95

0.9

1.05

0.95

0.9

1.05

0.95

0.9

S = = = = = s = s e
K=l S B U R S O - N B)

S9[0AD UONNOAXY POZI[EULION S9[0AD UONNOAXH POZI[EULION S9[0AD UOTINOAXF POZI[EULION

$9[0Ad UONNOAXY POZITEULION

Figure 3. Relative energy and execution time of the STAMP applications. The results are for the
8-core configuration, nhormalized wrt ET'L; SUICIDE (8-core).

151

5. DVFS-Based Contention Management

The main goal of a contention management policy is to
reduce the number of conflicts, thereby providing transac-
tion throughput and allowing the transactional system to
scale under heavy contention. As showed in the previous
Section (4.2), the SUICIDE scheme provided the best over-
all behavior. On close inspection, it can be noticed that
SUICIDE is not actually a real policy, in the sense that
all it does it to restart the transaction immediately. More
sophisticated policies (BACKOFF and DELAY) have been
investigated also, but they did not provide any benefit at all
in our experiments.

In order to investigate the reasons that prevented
BACKOFF and DELAY from being effective, we conducted
a detailed examination of their behavior by profiling their
execution stages. Of particular interest is the time/energy
spent while a transaction waits to be restarted after being
aborted (transactional stalls). The following phases are con-
sidered in our profiling:

e APP — time or energy spent in the non-transactional
part of the application;

TX — this phase characterizes the time or energy spent
while executing successfully committed transactions;

ABORT — when a transaction aborts we subsume all
the time or energy spent since it started under this cat-

egory;

STALL — for the BACKOFF and DELAY policies, a
transaction is only allowed to restart when a specific
event happens. The time or energy spent during this
stall is represented by this category.

The breakdown results for the BACKOFF, DELAY and
SUICIDE policies using the ETL; algorithm in a 8-core
configuration is showed in Figure 4. For this figure in partic-
ular we use the energy-delay product (EDP), a useful metric
proposed by Gonzalez and Horowitz [12] with the goal of
characterizing both low energy and fast runtimes. Figure 4
therefore presents the percentage of total EDP spent in each
of the execution stages, for each STAMP application.

First of all, notice that the fraction of EDP resulted
from non-transactional code (APP) varies widely from ap-
plication to application. While it is practically absent in
Labyrinth and Yada, it accounts for nearly 94% of the
total EDP of Kmeans. This is expected, since the time
spent in transaction is low for Kmeans.

The most important characteristic uncovered by Fig-
ure 4 is the fraction of EDP due to aborted transactions
(ABORT) and transactional stalls (STALL), particularly for
Intruder and Yada. Note that the policies BACKOFF
and DELAY were indeed able to reduce the ABORT per-
centage, but then the STALL fraction prevented them from

152

100

60

% of total

20

="

‘I []|
3
=
=}
M
O
<
=}

E m E o e B oo E oo E oo E oo E o

gz8 gzg 2 Z%8 §gzE gzE gzE g9zt

€25 3@ ¥35 SRS FEs 3E3 2ES FEs

mA®n MmA®n (=37 mA®n mA®n mAwn mMA®n MmA®n

Bayes Genome Intruder Kmeans Labyrinth SSCA2 Vacation Yada
[

APP = TX ABORT == STALL]

Figure 4. EDP breakdown for the STAMP ap-
plications with the three studied resolution
policies in a 8-core configuration.

achieving practical use. In Intruder, for instance,
BACKOFF was able to reduce the ABORT fraction from
50% (SUICIDE) to 12%, but the STALL fraction con-
sumed 51% of the total EDP. Likewise, a reduction in the
ABORT fraction with regard to SUICIDE can be observed
in DELAY (from 51% to 35%), but its STALL ratio reached
22%. Similar considerations are also valid for Yada.

If we were able to somehow reduce the STALL frac-
tion for BACKOFF and DELAY, they could as well outper-
form SUICIDE, as evidenced by Intruder and Yada.
Motivated by this observation, we devised a DVFS-based
strategy to improve the EDP that works as follows. Right
after a transaction is aborted, the processor enters a low-
power mode which is accomplished by reducing its fre-
quency and voltage (from 200MHz to 1.56MHz). The pro-
cessor then waits for the backoff period to end (BACKOFF)
or for the contended lock to be released (DELAY) in an
energy-efficient state. When the stall time ends, the pro-
cessor previous frequency and voltage are restored and the
transaction is restarted.

The rationale behind our technique is that the energy
spent during transactional stall can be reduced without de-
grading performance significantly, considering that such pe-
riod is considered idle time. The DVFS technique, however,
imposes an extra overhead to enter and exit the low-power
mode, which is approximately 50 cycles in our simulation
platform.

Figure 5 shows the results we have obtained with the
DVFS-based technique for the BACKOFF and DELAY poli-
cies. Due to space limitations, we only show the results for
the 8-core configuration. As usual, the values are normal-
ized wrt SUICIDE, since it was the best policy according
to Section 4.2. Notice that the bars are representing EDP
now (smaller values are better).

As can be seen in Figure 5, the proposed DVFS-based

1.1 1.1
1 e / * 1 g
E 0.9 o 0.9 £
o | §
= 08| : e aE 08 &
(0]
N >
- o
é 07 |- aE \. 07 £
o o
Z 06| S aE 06 =
<«
(¢}
0.5 |- : : |- 05 2
04| 1. | 4

Bayes Genome Intruder Kmeans

8 Cores

SSCA2 Vacation Yada
EDP BACKOFF === EDP DELAY == Cycles ‘

Labyrinth

Figure 5. EDP and execution time for BACKOFF and DELAY using ET'L;. The values are normalized

wrt ETL;, SUICIDE (8 cores).

mechanism provided significant enhancements. Virtually
all applications took advantage of the reduction in operation
frequency during transactional stall, especially Int ruder
and Yada, as predicted. In general, the average EDP im-
provement across the applications is 16.6% for BACKOFF,
and 15% for DELAY. An average performance increase of
6.5% (BACKOFF) and 7.2% (DELAY) is also achieved with
our technique. In particular, Yada exhibited an excellent
improvement and benefited the most from the DVFS strat-
egy, reaching a reduction of approximately 59% in EDP.

6. Related Work

Although power-performance tradeoffs have been inves-
tigated in the context of parallel applications before (e.g.
[13, 19]), the literature dealing with energy-aware synchro-
nization methods is more scarce. Li et al. [20] propose the
thrifty barrier, a hardware-software mechanism aimed at re-
ducing energy consumption in applications suffering from
barrier synchronization imbalance. When a thread arrives at
a barrier, a stall time is estimated and the processor is appro-
priately forced into a low-power mode, effectively reducing
the energy waste in barrier spin-loops. Our integration of
DVEFS with contention managers resembles the thrifty bar-
rier in the sense that the operation frequency of the proces-
sor is reduced after a transaction is aborted, thereby saving
energy while it waits to be restarted.

There has been an increasing interest in the energy ef-
ficiency of transactional memory recently, even though the
majority of the publications focus on hardware transactional
memory. The first work we are aware of that investigates
energy consumption in HTM systems is due to Moreshet
et al. [24]. Although their results suggest that HTM has
an advantage over locks in the absence of contention, the
experimental evaluation consists of only microbenchmarks.

153

Ferri et al. [9, 10] investigate energy-efficiency and perfor-
mance of different HTM configurations tailored to high-end
embedded systems. Since HTM systems are susceptible to
cache overflows, the authors consider alternative cache ar-
chitectures and analyze their impact on energy consump-
tion.

A detailed characterization of performance and energy is
presented by Gaona-Ramirez et al. [11] for two representa-
tive HTM systems: LogTM-SE [29] and TCC [4]. The sim-
ulator used by the authors estimates the energy consumed
by the on-chip caches and the interconnection network. The
characterization is conducted with the STAMP benchmark,
and no attempt is made to optimize energy or performance.
Sanyal et al. [26] offer a mechanism based on clock gating
to save energy in a TCC-based HTM [4]. When a transac-
tion is aborted, the corresponding processor is dynamically
turned off. Experimental results reveal an average 19% re-
duction in energy consumption and a 4% speedup. Like-
wise, Hughes and Li [15] propose two policies to increase
energy efficiency in HTM systems: a DVFES technique to
save energy during transactional stalls, and a heuristic based
on conflict probability to reschedule transactions and clock
gate aborted processors. Our work is in tandem with the lat-
ter two papers in as much as we also capitalize on reducing
the energy spent on aborted transactions and transactional
stalls.

We are not aware of any other study on energy character-
ization of STM other than our previous works [2, 17, 18].
In this paper we cover a much broader spectrum of the
STM design space, considering a new algorithm variation
(encounter-time locking, lazy versioning) and two addi-
tional contention management policies (suicide and delay).
We have also replaced our implementation infrastructure,
which was based on the TL2 version provided with the
STAMP benchmark [23], with TinySTM 1.0.3 [8].

7. Conclusions

In this paper we performed a thorough evaluation of
energy and performance of the most important lock-based
STM variations. Using the STAMP benchmark suite, our
evaluation indicated that the E7T'L; algorithm, along with
the SUICIDE resolution policy, provided the best overall
energy-performance tradeoff. By exploiting the slack avail-
able in applications showing high contention, our DVFS-
enhanced resolution policies achieved an EDP improvement
of 16% across the STAMP workloads when compared to the
best previously analyzed policy (SUICIDE).

8 Acknowledgment
This work is supported by FAPESP and CNPq.

References

(1]

(2]

(3]

[4]

[5]

[6]

(7]

(8]

[9]

[10]

[11]

A. Agarwal and M. Cherian. Adaptive backoff synchroniza-
tion techniques. In Proc. of the 16th ISCA, pages 396406,
1989.

A. Baldassin, F. Klein, G. Araujo, R. Azevedo, and P. Cento-
ducatte. Characterizing the energy consumption of software
transactional memory. IEEE Computer Architecture Letters,
8(2):56-59, 2009.

C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu,
S. Chiras, and S. Chatterjee. Software transactional mem-
ory: Why is it only a research toy? Communications of the
ACM, 51(11):40-46, Nov. 2008.

H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C.
Minh, W. Baek, C. Kozyrakis, and K. Olukotun. A scalable,
non-blocking approach to transactional memory. In Proc. of
the 13th HPCA, pages 97-108, Feb. 2007.

D. Dice, O. Shalev, and N. Shavit. Transactional Locking II.
In 20th International Symposium on Distributed Computing,
pages 194-208, Sept. 2006.

D. Dice and N. Shavit. Understanding tradeoffs in software
transactional memory. In Proc. of the CGO, pages 21-33,
Mar. 2007.

A. Dragojevic, P. Felber, V. Gramoli, and R. Guerraoui. Why
STM can be more than a research toy. Communications of
the ACM, 54(4):70-77, Apr. 2011.

P. Felber, C. Fetzer, and T. Riegel. Dynamic performance
tuning of word-based software transactional memory. In
Proc. of the 13th PPoPP, pages 237-246, Feb. 2008.

C. Ferri, A. Viescas, T. Moreshet, R. 1. Bahar, and M. Her-
lihy. Energy efficient synchronization techniques for em-
bedded architectures. In Proc. of the 18th GLSVLSI, pages
435-440, May 2008.

C. Ferri, S. Wood, T. Moreshet, R. 1. Bahar, and M. Her-
lihy. Embedded-TM: Energy and complexity-effective hard-
ware transactional memory for embedded multicore sys-
tems. Journal of Parallel and Distributed Computing,
70(10):1042-1052, Oct. 2010.

E. Gaona-Ramirez, R. Titos-Gil, J. Fernandez, and M. E.
Acacio. Characterizing energy consumption in hardware

154

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

transactional memory systems. In Proc. of the 22nd SBAC-
PAD, pages 9-16, Oct. 2010.

R. Gonzalez and M. Horowitz. Energy dissipation in gen-
eral purpose microprocessors. IEEE Journal of Solid-State
Circuits, 31(9):1277-1284, Sept. 1996.

E. Grochowski, R. Ronen, J. Shen, and H. Wang. Best of
both latency and throughput. In Proc. of the ICCD, pages
236-243, Oct. 2004.

T. Harris, J. Larus, and R. Rajwar. Transactional Memory.
Morgan & Claypool Publishers, 2 edition, June 2010.

C. Hughes and T. Li. Optimizing throughput/power trade-
offs in hardware transactional memory using DVFS and in-
telligent scheduling. In Proc. of the 25th ICS, pages 141—
150, 2011.

S. Kaxiras and M. Martonosi. Computer Architecture Tech-
niques for Power-Efficiency. Morgan & Claypool Publish-
ers, 2008.

F. Klein, A. Baldassin, G. Araujo, P. Centoducatte, and
R. Azevedo. On the energy-efficiency of software transac-
tional memory. In Proc. of the 22nd SBCCI, pages 1-6, Sept.
2009.

F. Klein, A. Baldassin, J. Moreira, P. Centoducatte, S. Rigo,
and R. Azevedo. STM versus lock-based systems: An en-
ergy consumption perspective. In Proc. of the 2010 ISLPED,
pages 431-436, Oct. 2010.

J. Liand J. F. Martinez. Dynamic power-performance adap-
tation of parallel computation on chip multiprocessors. In
Proc. of the 12th HPCA, pages 77-87, Feb. 2006.

J. Li, J. F. Martinez, and M. C. Huang. The thrifty barrier:
Energy-aware synchronization in shared-memory multipro-
cessors. In Proc. of the 10th HPCA, pages 14 — 23, Feb.
2004.

M. Loghi, L. Benini, and M. Poncino. Power macromodel-
ing of MPSoC message passing primitives. ACM Transac-
tions on Embedded Computing Systems, 6(4):31, Sept. 2007.
M. Loghi, M. Poncino, and L. Benini. Cycle-accurate power
analysis for multiprocessor systems-on-a-chip. In Proc. of
the 14th GLSVLSI, pages 410—406, Apr. 2004.

C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford Transactional Applications for Multi-
Processing. In Proc. of the IISWC, pages 35-46, Sept. 2008.
T. Moreshet, R. I. Bahar, and M. Herlihy. Energy reduction
in multiprocessor systems using transactional memory. In
Proc. of the 2005 ISLPED, pages 331-334, Aug. 2005.

B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh,
and B. Hertzberg. McRT-STM: A high performance soft-
ware transactional memory system for a multi-core runtime.
In Proc. of the 11th PPoPP, pages 187-197, Mar. 2006.

S. Sanyal, S. Roy, A. Cristal, O. S. Unsal, and M. Valero.
Clock gate on abort: Towards energy-efficient hardware
transactional memory. In Proc. of the IPDPS, pages 1-8,
May 2009.

N. Shavit and D. Touitou. Software transactional memory.
In Proc. of the 14th PODC, pages 204-213, Aug. 1995.

H. Sutter and J. Larus. Software and the concurrency revo-
lution. Queue, 3(7):54-62, Sept. 2005.

L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D.
Hill, M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling
hardware transactional memory from caches. In Proc. of the
13th HPCA, pages 261-272, Feb. 2007.

