
A Transactional Runtime System for the Cell/BE

Architecture

A. Baldassina,∗, F. Goldsteinb, R. Azevedob

aUNESP – Univ Estadual Paulista, DEMAC. Av. 24A, 1515 - Bairro Bela Vista, Rio
Claro - Brazil

bUniversity of Campinas (UNICAMP), IC. Av. Albert Einstein, 1251 - Cidade
Universitaria, Campinas - Brazil

Abstract

Single-core architectures have hit the end of the road and industry and

academia are currently exploiting new multicore design alternatives. In spe-

cial, heterogeneous multicore architectures have attracted a lot of attention

but developing applications for such architectures is not an easy task due to

the lack of appropriate tools and programming models. We present the de-

sign of a runtime system for the Cell/BE architecture that works with mem-

ory transactions. Transactional programs are automatically instrumented

by the compiler, shortening development time and avoiding synchronization

mistakes usually present in lock-based approaches (such as deadlock). Exper-

imental results conducted with a prototype implementation and the STAMP

benchmark show good scalability for applications with moderate to low con-

tention levels, and whose transactions are not too small. For those cases

in which a small performance loss is admissible, we believe that the ease of

∗Principal corresponding author
Email addresses: alex@rc.unesp.br (A. Baldassin),

felipe.goldstein@students.ic.unicamp.br (F. Goldstein), rodolfo@ic.unicamp.br
(R. Azevedo)

Author version submitted to Journal of Parallel and Distributed ComputingDecember 6, 2012

programming provided by transactions greatly pays off.

Keywords:

Multiprocessors, Parallel Programming, Transactional Memory

1. Introduction

Extreme power dissipation and microarchitectural limitations have made

the semiconductor industry bet its future on multicore architectures, or chip

multiprocessors as they are usually called [1]. The general trend is to replicate

a microprocessor core and integrate them into a single chip, probably lowering

the clock rate to address the power dissipation issue.

Although the vast majority of current multiprocessors employ an homo-

geneous approach, wherein only one type of core is used, new designs are

starting to exploit heterogeneity. These asymmetric chip multiprocessors are

usually comprised of a general purpose core along with simpler and more

specialized cores. The reasoning behind heterogeneous architectures is that

they are able to address a larger class of applications more efficiently in terms

of throughput and energy per instruction [2].

The main impediment for a wider adoption of asymmetric architectures

lies in the appropriate programming models and tools for software develop-

ment. Since different cores coexist in the same system, the lack of proper

abstractions requires programmers to know a large fraction of the underly-

ing microarchitecture to exploit performance to the fullest, lengthening the

software production cycle.

Take as an example the Cell Broadband Engine (Cell BE) architecture

designed by Sony, Toshiba, and IBM [3, 4]. A Cell BE is comprised of a

2

multithreaded PowerPC (PPE) and eight specialized cores called synergistic

processor elements (SPEs). Each SPE has its own local memory, segregated

from the global memory seen by the PowerPC. Moving data between global

and local memories requires programmers to issue specific direct memory

access (DMA) commands. Coherence between these memories must also be

handled by programmers since it is not enforced by hardware. This sig-

nificantly complicates shared memory concurrent programming, the most

common concurrent programming model, on Cell. Moreover, PPE and SPEs

have two different instruction set architectures and therefore two distinct sets

of binary tools are required.

We propose a transactional runtime system in order to simplify the devel-

opment of shared memory concurrent software for the Cell BE architecture.

The main abstraction of our system is that of atomic blocks (or transactions),

an area of extensive research but whose implementation focus is mostly on

homogeneous architectures [5, 6]. The contributions of this article are as

follows:

• We describe a transactional programming model for the Cell/BE archi-

tecture: programmers mark shared variables with a specific attribute

and confine the code that touches them into atomic blocks.

• We present a software implementation of a transactional runtime sys-

tem for the Cell BE architecture based on the state-of-the-art Transac-

tional Locking II (TL2) algorithm designed by Dice et al. [7]. The main

modification of the algorithm regards the commit operation which is

realized in two stages, the first performed by a synergistic processor

and the second by the main processor.

3

• We conduct a thorough evaluation of our runtime system using the

STAMP benchmark suite [8]. We show how the system behaves and

conclude that the best case scenario is for those applications in which

transactions are not too small and contention level is moderate to low.

The rest of this article is organized as follows. Section 2 gives a back-

ground on the Cell BE architecture and memory transactions, also describing

related work. Section 3 presents the programming model and how it simpli-

fies software development for Cell BE. We discuss design choices and present

an implementation of the runtime system in Section 4. Section 5 shows a

comprehensive performance analysis and the achieved results, and we con-

clude the article in Section 6.

2. Background

In this section we briefly present the background necessary to the subse-

quent sections (Cell BE architecture and memory transactions) and discuss

related work.

2.1. Cell BE architecture in a nutshell

The Cell BE architecture is comprised of nine processing elements, a

Memory Interface Controller (MIC), a Broadband Engine Interface (BEI),

and a high performance coherent bus, the Element Interconnect Bus (EIB).

The EIB connects the processing elements, the MIC, and the BEI together.

A diagram with the main components is shown in Figure 1.

The processing elements can be split into two different categories: one

PowerPC processor (PPE) and eight synergistic processors (SPEs). The PPE

4

Cell/B.E.

Element Interconnect Bus (EIB)

PPE

PPU

L2

L1

BEIMIC

SPE-0

SPU

LS

MFC

SPE-1

SPU

LS

MFC

SPE-2

SPU

LS

MFC

SPE-3

SPU

LS

MFC

SPE-4

SPU

LS

MFC

SPE-5

SPU

LS

MFC

SPE-6

SPU

LS

MFC

SPE-7

SPU

LS

MFC

Memory Input/Output

Figure 1: Cell BE Architecture.

is comprised of a 64-bit execution core based on the PowerPC architecture

(with two simultaneous threads) and an L1 cache, typically known as PPU

(PowerPC Processor Unit). An external L2 cache is also part of the PPE.

The main purpose of the PPE is to execute the operating system and manage

the synergistic elements. The SPEs are SIMD processors specialized in data-

intensive processing. Each one has a simple execution core (without out-

of-order execution and branch prediction), a 128 128-bit register file, and a

256KB local storage (LS), together referred as SPU (Synergistic Processor

Unit). Communication with main memory, PPE, and other SPEs is handled

by the Memory Flow Controller (MFC).

There are two main differences between the PPE and SPE. Firstly, the

corresponding instruction set architectures are incompatible, leading to two

distinct sets of compilers and binary tools. Secondly, whereas the PPE ac-

cesses global memory by means of simple load/store instructions, an SPE

needs to issue a DMA transfer through its MFC, since its load/store instruc-

5

tions affect only the local storage. Besides DMA operations, the MFC also

allows communication among SPEs and PPE through a signal mechanism

and mailbox.

2.2. Transactions at a glance

A transaction is a sequence of instructions that is either entirely executed,

meaning the changes performed by the instructions logically take place at the

same point in time, or not executed at all, meaning no partial result is left.

In the former case, we say that the transaction committed, whereas in the

latter case the transaction aborted. It is a common practice to restart a

transaction once it is aborted.

Memory transactions raise the abstraction level and make it simpler to

deal with synchronization code in a concurrent application. While a lock-

based scheme requires programmers to come up with a locking protocol and

decide among different locking granularities (ease of programming and per-

formance tradeoff), transactions move most of the burden from programmers

to the implementation system.

Transactional memory (TM) is an active area of research and implemen-

tations have been devised both in hardware (HTM) and software (STM) (hy-

brid approaches also exist) [5, 6]. The transactional runtime system proposed

in this article falls into the STM category and, therefore, we focus our dis-

cussion on this category of implementations. An Application Programming

Interface (API) for STM is usually comprised of the following primitives:

• begin atomic – creates a checkpoint and starts a transaction;

6

• end atomic – ends the transaction and attempts to make the changes

permanent (the transaction is automatically rolled back otherwise);

• stm load and stm store – read and write barriers, respectively. These

barriers must be used instead of conventional load and store instruc-

tions when accessing shared data.

In general, there are two broad classes regarding the design space of

STM: non-blocking and blocking. Early software implementations (such as

DSTM [9] and RSTM [10]) were non-blocking, avoiding the use of locks in

their design. However, most non-blocking designs at the time incurred high

overhead due to indirection and validation, which prompted researchers to

investigate blocking implementations. One of the most famous blocking al-

gorithms is the Transactional Locking II (TL2), designed by Dice et al. [7].

Since our approach is based on TL2, we present in the following paragraphs

a general overview of this algorithm and how it compares to other lock-based

implementations. More details are described in Section 4, when we present

our implementation.

The TL2 algorithm relies on two main shared data structures: a Global

Clock (GC) and an Ownership Record Table (ORT). The GC can be seen as a

timestamp and is used to maintain system-wide consistency. The ORT stores

a versioned lock for each shared memory address. A hash function is used

to map these addresses into a versioned lock in a per-stripe fashion. Each

versioned lock serves two purposes: if the corresponding memory address is

not locked (indicated by the least significant bit) it holds the corresponding

version number based on the GC; otherwise a transaction has locked the

respective address, preventing access from other transactions.

7

Briefly, the operation of each transactional primitive in TL2 is as follows.

Upon starting (begin atomic), each transaction retains a local copy of the

GC. A read barrier (stm load) makes sure the execution is operating on a

consistent state by checking the transaction local version number against the

versioned lock of the loaded word. A write barrier (stm store) causes the

referenced address and corresponding value to be stored locally in a write

buffer. The commit phase (end atomic) starts by acquiring the locks for

the shared addresses contained in the write buffer and proceeds to increment

the GC atomically. After that, the read set is validated, the changes are

committed into main memory and the locks are released. If inconsistency is

found in any of the steps, the transaction is aborted and re-executed.

The main advantage of TL2 over their lock-based counterparts (such as

McRT-STM [11] and Bartok-STM [12]) is that it provides opacity [13] (mem-

ory view is always consistent) without requiring incremental validation. Re-

cent lock-based implementations such as TinySTM [14] and SwissTM [15]

also use the timestamp technique and the basic metadata used by TL2.

They mostly differ on how data versioning and conflict detection are per-

formed. Whereas TL2 uses optimistic concurrency (conflicts are detected

at commit time) and deferred updates (tentative writes are stored locally),

TinySTM provides pessimistic concurrency (conflicts are detected eagerly)

and can also make use of direct updates (tentative writes are stored in main

memory and old values locally). SwissTM uses optimistic concurrency for

read/write conflicts and pessimistic concurrency for write/write conflicts.

8

2.3. Related Work

One way to improve programmability on the Cell architecture is to use a

technique known as Software-Managed Cache (SMC), which effectively sim-

ulates a cache using each SPE local store. Therefore, programmers are freed

from the burden of manually dealing with DMA transfers and, at the same

time, may benefit from performance gains due to the temporal and spatial

locality provided by the software cache. Indeed, SMCs are a common tech-

nique used by Cell applications and one such implementation is provided

with the Cell SDK library [16].

More recently, researchers have proposed new and more advanced im-

plementations of SMCs for the Cell BE processor [17, 18, 19, 20], including

prefetching of irregular references [21]. Although SMCs guarantee that an

SPE local store is coherent with the external main memory, they do not

provide coherence among the SPE local stores. Therefore, programmers still

need to handle explicit data transfers if more than one SPE is running code

that shares data. Our approach provides the benefits of the transactional

model for the Cell architecture, effectively hiding the complexity of handling

data transfers just like SMCs. Different from SMCs, however, our runtime

system guarantees that all accesses to the SPE local stores and global mem-

ory are coherent.

The closest work to ours is COMIC [22]. COMIC API provides a typical

shared memory programming environment in which multiple threads can be

spawned. A write to a shared location issued by a SPE thread is visible to

reads from other SPE threads. Similar to our work, COMIC uses a central-

ized approach wherein synchronization services are provided to the SPEs by

9

the PPE. The main difference between our work and COMIC is the program-

ming model adopted: while COMIC provides lock-based synchronization, we

take a leap ahead and allow Cell programmers to experiment the benefits of

the transactional model.

There is a large body of work on software transactional memory imple-

mentations for homogeneous processors [9, 10, 11, 12? , 14, 15, 23, 24, 25].

While some investigation have been carried out on adapting the transac-

tional model for clusters [26, 27], the research on evaluating STM designs

on heterogeneous architectures is very limited. Lee et al. [28] present such

an approach but there is not enough information to compare their system to

ours. Also, no experimental results are reported. In this article we provide

a transactional system implementation and evaluation for an heterogeneous

system, the Cell/BE architecture.

3. Programming Model

Shared memory programming on Cell is typically achieved by creating a

PPE main thread and launching one or more SPE worker threads from this

main thread. The standard way to perform synchronization among threads is

through locks and condition variables, whose drawbacks are well-known [29].

The atomic operations necessary to implement the synchronization mecha-

nism are provided by the load-linked and store-conditional instruction pair

for the PPE. For the SPE, the MFC provides a similar semantics but requires

DMA operations and, therefore, extra overhead is added.

Our proposed programming model uses a different scheme for synchro-

nization. Instead of using lock-based primitives, we provide a transactional

10

model. Programmers are responsible to group the instructions that are re-

quired to be executed indivisibly into an atomic block. Furthermore, and

contrary to typical STM libraries, programmers use the ea qualifier to

mark shared variables so that the compiler can insert the transactional read

and write barriers automatically.

For the sake of discussion, consider a simple scenario: each SPE must

increment a global counter in the PPE address space. A possible imple-

mentation using a conventional STM library is shown in Figure 2a. Notice

that the value of counter (line 1) must be correctly initialized before the

code is actually executed (the SPE could receive the pointer value from the

PPE at initialization, for example). The programmer then uses the calls

begin atomic() and end atomic() (lines 3 and 7, respectively) to specify

the atomic block, that is, the sequence of instructions that must be executed

atomically. In a typical STM library, the programmer must also explicitly

instrument the code by inserting memory barriers to read from (line 4) and

write to (line 6) shared memory.

During development, correctly performing manual instrumentation is both

cumbersome and error-prone. Therefore, we provide a system in which the

compiler automatically inserts the transactional barriers. All that is required

from programmers is to add the address space identifier ea to the pointer

declaration. Figure 2b shows how the same program of Figure 2a is coded in

our system. Notice the addition of the ea qualifier in line 1 and the removal

of the instrumentation code, resulting in a much simpler implementation.

As the aforementioned example has shown, having the compiler to in-

strument the code is a key feature of our system. Not only does it allow

11

1 int *counter; // must be initialized with PPE address

2

3 begin_atomic()

4 int value = stm_load(&counter);

5 value++;

6 stm_store(&counter, value);

7 end_atomic()

(a) Explicitly using an STM library

1 int __ea *counter; // must be initialized with PPE address

2

3 begin_atomic()

4 *counter++;

5 end_atomic()

(b) Compiler support

Figure 2: Incrementing a global counter.

12

programmers to quickly develop applications, but it also avoids the pitfalls

in manually dealing with the transactional barriers. The extra cost of adding

the ea qualifier is completely justified and, moreover, it also helps in doc-

umenting the code. As an example, we measured the number of extra lines

needed to code the genome application from the STAMP benchmark [?],

with and without compiler support. Compared to the original version, the

code size (in number of lines) with compiler support increased only by 2%,

whereas a 29% increase was seen in the case of manual instrumentation.

4. Runtime Implementation

The implementation described here makes use of the SPU Runtime Li-

brary Extensions [?]. In fact, the ea address space qualifier language was

first introduced as an extension to the SPU library and implemented in the

GNU Compiler Collection (GCC) with the purpose of facilitating data shar-

ing between an SPE and the PPE. Whenever the SPU GCC compiler finds

a reference to a pointer variable qualified as ea, it appropriately generates

a call to the SMC library distributed with the IBM SDK. The SMC API is

primarily comprised of two functions:

void * cache fetch(ea void *effective address)

the variable at the given effective address is first looked up in the soft-

ware cache and, in case it is present, returned. Otherwise, a DMA

operation is performed to bring the data from system memory to the

software cache. This function also takes care of cache replacement op-

erations such as writing back dirty cache lines.

13

SPU compiler SPU linker

0101101

1011101

0010101

1110110

STM

Library

SPU source file Instrumented
object code file

Executable file

 Includes calls to

cache_fetch and

cache_fetch_dirty

 Replaces SMC calls

with transactional

semantics

Figure 3: Generation flow.

void * cache fetch dirty(ea void *effective address, int nbd)

same behavior as cache fetch, but the given nbd number of bytes

are marked as dirty in the cache. Therefore, this call is used in case of

store operations.

The reader should notice the similarity between these functions and the

transactional read and write barriers. Our implementation leverages the

SMC library so that programmers can also use transactions. Instead of using

the SMC library, we instruct the linker to use our STM library. The read

and write barriers are implemented as wrappers to the cache fetch and

cache fetch dirty functions, respectively. Figure 3 shows an overview of

the generation process. The SPU compiler receives as input the application

source file written with the transactional model. It then generates an in-

strumented object code containing calls to both the STM and SMC libraries

(in case of the ea qualifier). However, the SPU linker only references the

STM library when generating the executable file, since the corresponding

SMC functions are mapped to the transactional read and write barriers.

14

In the rest of this section we describe the design of our STM system

and discuss the implementation of the main transactional primitives (start,

commit, read and write barriers) for the Cell/BE.

4.1. Design Choices

A crucial aspect to consider when devising an STM system for an hetero-

geneous architecture is which algorithm to use. As discussed in Section 2.2,

STM designs can be broadly classified as either non-blocking or blocking.

We ruled out non-blocking algorithms for two main reasons: (i) high cost

of validation, and (ii) most of the designs are intended for object-oriented

languages, whereas our primary interest is on procedural languages, most

notably the C language.

A natural choice among the blocking options is the TL2 algorithm [7].

We also considered alternatives such as TinySTM [14] and SwissTM [15], but

ended up selecting TL2 as basis for our implementation due to the reasons

discussed in the following. Firstly notice that, since heterogeneous architec-

tures have segregated memories, it is of paramount importance to reduce the

number of costly DMA transfers among local and shared memories. There-

fore, transactional primitives that are most often used, specially read and

write barriers, must avoid excessive communication with external memory.

The original TL2 algorithm needs three shared memory accesses for the

read barrier and none for the write barrier. Since TinySTM uses pessimistic

concurrency, it requires an atomic read-modify-write operation inside the

write barrier, which is very expensive for the SPE to perform. In addition to

requiring an expensive memory operation for the write barrier, SwissTM also

demands extra memory reads (usually four) for the read barrier, since it ma-

15

nipulates two versioned locks in the ORT to allow for a mix of pessimistic (for

write/write conflicts) and optimistic concurrency (for read/write conflicts),

and both need to be accessed during a transactional read. This restriction

can be removed by organizing the ORT such that the two versioned locks are

contiguous in memory, allowing a single DMA operation to bring both locks

into the SPE local memory. Note, however, that the extra costly memory

operation in the write barrier cannot be avoided.

Another source of overhead common to TinySTM and SwissTM emerges

when a transaction needs to abort due to inconsistent reads. Since these

designs employ an encounter-time locking approach, all locked words must

be released upon an abort. This strategy would add excessive overhead to

the abort operation on an heterogeneous architecture, and thus we refrained

from using it. On the other hand, TL2 only performs locking at commit time

and the cost to abort a transaction is almost non-existent.

The most important design decision we made was to avoid having the

SPE issuing a large quantity of DMA operations. Therefore, as the previous

discussion suggests, our algorithm is based on TL2. TinySTM and SwissTM

do have a performance advantage when aborts are rare, since they do not

need to acquire the locks for the write set during commit. However, this

strategy sounds far less appealing for the Cell/BE architecture due to the

prohibitive price of performing a shared atomic operation inside the SPE. In

order to avoid excessive SPE overhead, our design splits the commit oper-

ation between the SPE and PPE so that costly operations such as read set

validation and locking are performed entirely by the PPE (more details are

presented in Section 4.5).

16

Figure 4: Implementation infrastructure.

4.2. STM Library Infrastructure

For the sake of presentation, we opt to give a informal description of

the functionality of our STM system. We make use of Figure 4 throughout

the rest of this section to present the main operations and how they were

implemented. The following components, functionality, and metadata are

part of the system:

Main memory: The main structure kept in shared memory is the own-

ership record table (ORT). The ORT itself can be seen as a tagless

17

hash table and each of its records contains a version number and a lock

bit. Every addressable memory position is mapped into the ORT by

means of a hash function. Notice that two or more different addresses

can be mapped to the same table record and may cause false aborts:

a situation wherein a transaction is aborted when it could possibly

proceed.

Since our implementation works at the granularity of the SMC line size,

all addresses contained in the same cache line are mapped to the same

ORT entry. We use a simple hash function to accomplish this:

h(a) = (a >> log2 cachelinesize) mod ORTsize

where a is the referenced address. Function h(a) returns the ORT

index of address a. A larger line size favors spatial locality but can also

induce false sharing which, in turn, might lead to spurious aborts. We

conduct a detailed analysis of this issue in Section 5.1.

A global clock (GC) is also stored in main memory and it is the central

mechanism used by TL2 to maintain consistency. The GC is read every

time a transaction starts and it is atomically incremented during the

commit stage.

PPE: For every transaction running in an SPE thread there is a peer thread

hosted in the PPE. The main purpose of this thread is to perform the

commit operation, as described in more detail in Section 4.5. An SPE

can also offload certain jobs (such as global memory allocation) to the

PPE thread by using an RPC-like mechanism.

18

SPE: Besides the executing thread, every SPE also maintains a set of meta-

data information in its corresponding local storage, including the SMC,

the read and write sets, and the transaction descriptor. Basically, the

transaction descriptor keeps the transaction status (active, commit-

ted or aborted), a pointer to the ORT, and a version number. The

SMC implementation is based on the one provided with the IBM SDK

3.1 [16].

We now discuss how the main transactional primitives are implemented.

The primitives to start a transaction and the read and write barriers follow

very closely the original TL2 algorithm. We particularly specialized the com-

mit operation to take into account the heterogeneous nature of the Cell/BE

architecture.

4.3. Starting a Transaction

When a transaction starts (call to begin atomic), a copy of the GC is

fetched from main memory and stored in the version field of the transaction

descriptor. The read and write sets are cleared, the SMC contents are flushed,

and the transaction status is set to active. During its lifetime, a transaction

will call the read and write barriers to access shared memory. When a call

to end atomic is found, the STM system will attempt to commit the written

data into main memory. An important aspect of every application is the need

to deal with dynamic memory. Our STM system provides a transactional

version of the standard malloc and free functions. The allocation and

deallocation processes are actually controlled by the PPE thread.

19

4.4. Transactional Reads and Writes

Before discussing the actual reading process, we need to describe how a

read value is validated. Validation is crucial to the correct execution because

it guarantees that the states accessed by a transaction are consistent. To

validate a given effective address, its corresponding record (version number

and lock bit) must be first retrieved from the ORT. Therefore, a DMA op-

eration is necessary if validation must be performed by an SPE. A variable

read by a transaction is valid if the corresponding lock bit is not set and the

version field is less than the transaction version number. This certifies that

no other transaction is writing to the same position, and that no transaction

has written the same variable since the current transaction started. If the

check fails, the transaction is aborted and restarted.

A call to stm load takes as an argument the effective address and returns

the corresponding data. Programmers always deal with at most 64-bit values

(the SPU standard data size), but internally a whole cache line is stored in

the SMC for performance reasons. If the required data is already in the cache

a hit occurs and the value is immediately returned. If the data is not present,

it is looked up in the write set first. If it is still not found, then the data

must be fetched from main memory. However, before retrieving the actual

data, the transaction must be validated as explained previously. The TL2

algorithm requires another validation step after the data is read. Once the

transaction is validated, the read set is updated (only the tag field is stored

in the read set – see the FETCH label in Figure 4). From the SPE point of

view, the read barrier is expensive since it might require three ordered DMA

accesses: two for validation and one for the actual data.

20

The implementation of the transactional write barrier (function stm store)

is much simpler than the read barrier because it does not need to perform

any kind of validation. A write operation takes as an argument the effective

address and a value to be stored. Instead of writing the value directly into

the transaction write set, we simply store the value in the SMC. Only when

an SMC dirty line must be replaced the write set is actually used. To im-

plement this functionality we modified the writeback subroutine of the SMC

to store the cache line into the write set instead of main memory (see the

WRITEBACK label in Figure 4).

4.5. Committing a Transaction

The commit operation is the longest and most complicated one. First

of all, it is split into two parts in our system: a first phase executed by an

SPE, and a second one performed by the peer PPE thread. This is the main

aspect differing our approach from the original algorithm.

When a call to end atomic is found, the SPE first flushes the contents

of the SMC. This guarantees that all dirty cache lines are moved to the

transaction write set. The SPE then initiates a sequence of DMA requests

to transfer the contents of the read set, the write set, and the transaction

version number to a specific location in main memory (this location is set

by both PPE and SPE during system initialization). After the transfers are

completed, the SPE sends a commit message to the PPE (see the COMMIT

label in Figure 4). While the PPE is processing the second phase, the SPE

waits for a message with the commit status: either the transaction succeeded

or failed, in which case the transaction is restarted.

When the PPE receives the commit message, it can immediately start the

21

second phase since the data required by the operation (read and write sets,

plus the transaction version number) were already transferred by the SPE.

The first step performed by the PPE thread is to acquire the lock for every

address in the write set. This is accomplished by using an atomic operation

to set the lock bit of the corresponding record in the ORT. If the atomic

operation fails, the commit procedure ends and the SPE is notified. After

locking the entire write set, the PPE increments the GC. In the next step,

every address in the read set must be validated. In case of any inconsistency,

the lock bits acquired in the first step must be released and a fail message is

returned to the SPE. When the read set is completely validated, the transac-

tion is said to be logically committed. It remains to move the changed data

to their actual place in main memory and update their corresponding record

in the ORT: new GC becomes the version field, and the lock bit is unset. A

success message is then returned to the SPE.

4.6. Aborting a Transaction

Since our algorithm performs commit-time locking and deferred updates,

the cost involved in aborting a transaction is almost non-existent. When a

conflict is detected and the transaction must be aborted, the SPE simply

restarts the transaction by performing a long jump to the begin atomic op-

eration. We do not perform any kind of backoff before restarting, since they

did not provide any performance benefits during our tests. Notice that a

transaction needs to be aborted in two situations: (1) during a inconsistent

read operation in the read barrier; (2) during the commit operation, if the

write set could not be locked or the read set validation failed.

22

4.7. Limitations

In its current state our design does not support nested transactions, al-

though we believe that the flattening model (a transaction and its nested

transactions are treated as one large transaction) could be easily integrated

into the design. Another limitation regards the size of the transactional read

and write sets. Since they are kept in the SPE local storage, there is the

possibility of overflows to happen. At the present time we simply raise an

exception and abort the program. This problem can be circumvented by

using space on external memory when an overflow is detected, but we leave

this task as future work.

We would also like to note that our current prototype implementation is

not fine-tuned for performance on the SPE, and should be seen as a proof-of-

concept of the feasibility of the transactional model on the Cell/BE architec-

ture. We make use of a basic form of branch hinting since the SPE penalty

for misprediction is high (18 cycles), but no simdization optimization is per-

formed. Therefore, there is plenty of room left for improvement. We also

intend to investigate the performance impact of optimizing compilers such

as the one presented in [30] as future work.

5. Experimental Results

In this section we present a thorough evaluation of a prototype implemen-

tation of our proposed transactional runtime system. For the experiments

conducted in this section we make use of a 3.2GHz Playstation 3 (PS3) ma-

chine running Red Hat Linux (kernel 2.6.24). We report results for 6 SPEs,

since 2 out of the 8 are not available on PS3 consoles. All the results re-

23

ported in this section are averaged over 30 executions and presented with a

95% confidence interval.

The applications used in the experiments are compiled with the GNU

compiler toolchain available in the IBM Cell SDK 3.1 (GCC version 4.1.1).

For the experiments that required SPE code instrumentation (Sections 5.1

and 5.2), we directly utilized the SPE decrementer register in order to re-

duce the amount of instrumentation overhead. The value in this register is

decremented at a rate of 79.8MHz, providing a precision of approximately

12ns. The transactional runtime system is configured with an ORT of 220

records. The read and write sets are statically configured to 213 and 210

entries, respectively, in order to avoid overflows.

The STAMP [?] benchmark suite is used for evaluation purposes. Re-

sults are reported for 6 out of the 8 provided applications: (1) Genome, a

DNA sequencing algorithm; (2) Intruder, a network intrusion detection appli-

cation; (3) Kmeans, a clustering algorithm; (4) Labyrinth, an implementation

of the Lee [31] algorithm for maze routing; (5) SSCA2, a graph construction

application using adjacency arrays; and (6) Vacation, a simulation of a travel

reservation system. We did not use the other two applications, Bayes and

Yada, since Bayes exhibited nondeterministic behavior (confidence interval

too large) and Yada did not produce correct results on our system. Others

in the literature have faced the same problem [32, 33].

The configurations used for each application are given by Table 1. Note

that some of them differ from the recommendations specified in the STAMP

paper, mostly because of SPU restrictions such as memory size (recall that an

SPE has only 256KB of local storage). For instance, choosing a larger maze

24

Application Arguments

Genome -g1024 -s64 -n131072

Intruder -a20 -l896 -n1536 -s1

Kmeans -m80 -n80 -t0.05 -i random-n16384-d24-c16

Labyrinth -i random-x86-y86-z3-512

SSCA2 -s14 -i1.0 -u1.0 -l9 -p9

Vacation -n4 -q60 -u90 -r524288 -t32768

Table 1: Application configurations.

size for Labyrinth would cause the program to crash when dynamic memory

was requested. The arguments were selected so that the running time of the

applications was reasonable and appropriate for the experiments. A short

execution time (less than 1 second) would produce a large confidence interval

and unreliable results. We characterize the chosen 6 STAMP applications

with the given arguments in Section 5.2. Before that, however, we conduct

a sensitivity analysis of the main transactional SMC parameters in the next

Section.

5.1. SMC Analysis

Recall from Section 4.2 that our transactional runtime operates at the

cache line granularity. Therefore, when a word is referenced in the code,

the whole cache line is actually versioned. On the one hand, a larger cache

line favors spatial locality and may reduce the cache miss rate. On the other

hand, the probability of false conflicts due to multiple SPEs sharing the same

cache line tends to increase.

25

The number of cache lines also favors locality and may help to improve

system performance but, since the cache used by our system is implemented

in software, there is an extra cost in flushing its contents (the cost is pro-

portional to the number of cache lines). This is important to notice since

a flush is performed every time a transaction is started. Therefore, there is

also a tradeoff in selecting the quantity of lines for the SMC: a bigger value

increases spatial and temporal locality, but an additional price is paid for

flush operations.

In order to investigate the issues raised in the previous discussion, we

conducted an analysis to decide the best cache configuration for each appli-

cation. We are primarily interested in selecting the best cache line size and

the best number of lines. Due to implementation issues, the SMC is always

configured as a 4-way set associative cache.

Figure 5 shows the results for the 6 studied STAMP applications. The

number of cache sets is varied from 23 to 27 (shown along the X axis) and, for

each set size, the cache line size ranges from 24 to 27, covering a substantial

fraction of the design space. The Y axis displays the execution time (in

seconds) for each cache line size configuration. The results are for 6 SPEs.

Firstly, let us discuss what can be observed as the number of sets is

increased. As we mentioned earlier, the cost of the flush operation increases

linearly with the number of cache lines. If the performance gain resulted

from a reduced miss rate cannot compensate the extra cost induced by the

flushes, then we should see worse execution times. In fact, this very behavior

is specially observed in applications Genome, Intruder and Kmeans. As can

be confirmed by Table 2, the cache miss rate (CMR) decreases very slowly

26

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 8 16 32 64 128

T
im

e
 (

s
)

Number of sets

Genome

16
32
64

128

 20

 30

 40

 50

 60

 70

 80

 90

 8 16 32 64 128

T
im

e
 (

s
)

Number of sets

Intruder

16
32
64

128

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 8 16 32 64 128

T
im

e
 (

s
)

Number of sets

Kmeans

16
32
64

128
 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 8 16 32 64 128

T
im

e
 (

s
)

Number of sets

Labyrinth

16
32
64

128

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

 2.75

 2.8

 2.85

 2.9

 8 16 32 64 128

T
im

e
 (

s
)

Number of sets

SSCA2

16
32
64

128

 7

 8

 9

 10

 11

 12

 13

 14

 8 16 32 64 128

T
im

e
 (

s
)

Number of sets

Vacation

16
32
64

128

Figure 5: Runtime performance for different cache configurations.

27

as the set size is increased for these applications. Therefore, the cost added

by the flushes is dominant.

On the other hand, application Vacation seems to perform better when

the set size is increased from 8 to 16. Performance tends to decrease after

that point, however. Table 2 shows that, for this application, the CMR

is significantly reduced when 16 sets are used instead of 8, explaining the

performance boost. Consider, for instance, cache lines of 128 bytes: the miss

rate is reduced from 20% to 11% when the set size is increased from 8 to 16.

Larger set sizes (32, 64, and 128) do not provide further improvements, as

the flush cost starts to materialize. For other applications, such as Labyrinth

and SSCA2, the set size does not seem to make much difference. We observe

an improvement for Labyrinth with cache lines of 16 bytes when the set size

is increased to 16 and 32. However, the performs tends to degrade after 64

sets.

We now turn our attention to the impact of different cache line sizes on

the performance. Ideally, we would expect bigger line sizes to yield better

performance. However, as we already pointed out, false sharing can some-

what mitigate the advantages. To shed some light into this issue we also

present in Table 2 the number of retries per transaction (RPT). This value

give us a hint of how many transactions are aborted per committed trans-

action. It is evident from Figure 5 that the performance for applications

Genome and Intruder is severely hurt with the increased line size. Looking

at Table 2 it is apparent that the number of aborting transactions increases

with larger line sizes. For instance, increasing the line size from 16 to 32

bytes increases the RPT from almost 0 to 0.77 for the Genome application

28

Cache
Genome Intruder Kmeans Labyrinth SSCA2 Vacation

CMR RPT CMR RPT CMR RPT CMR RPT CMR RPT CMR RPT

23

24 7.12 0.00 54.59 0.30 18.44 0.02 4.48 0.81 29.31 0.01 65.71 5.22

25 4.83 0.77 50.14 0.42 7.76 0.52 1.87 0.74 21.44 0.01 36.13 3.99

26 3.74 0.83 42.19 0.56 3.71 0.26 0.77 0.75 16.47 0.01 22.95 3.80

27 3.28 1.00 36.41 0.95 1.98 0.57 0.38 0.69 13.30 0.01 20.33 3.63

24

24 6.44 0.00 50.81 0.31 16.41 0.02 3.70 0.75 28.51 0.00 26.22 4.63

25 4.45 0.83 47.96 0.40 7.33 0.42 1.51 0.78 21.17 0.01 17.00 4.04

26 3.50 0.88 40.44 0.55 3.57 0.20 0.74 0.72 16.29 0.01 12.30 2.76

27 3.00 1.11 34.88 0.87 1.89 0.46 0.38 0.70 13.18 0.01 11.34 2.57

25

24 6.22 0.00 50.03 0.74 15.61 0.09 3.01 0.86 28.30 0.00 17.14 4.48

25 4.37 0.87 46.91 0.64 7.16 0.21 1.49 0.82 21.08 0.01 13.56 5.06

26 3.60 1.16 39.10 0.69 3.52 0.19 0.74 0.72 16.23 0.01 10.38 3.59

27 3.27 1.49 34.21 0.88 1.85 0.40 0.37 0.68 13.14 0.01 9.43 3.27

26

24 6.14 0.00 48.34 0.53 15.23 0.05 2.98 0.86 28.20 0.00 15.47 4.21

25 4.36 0.86 46.58 0.52 7.08 0.12 1.48 0.78 21.04 0.01 12.36 4.45

26 3.63 1.37 38.94 0.57 3.47 0.18 0.74 0.71 16.20 0.01 10.26 4.65

27 3.08 1.77 34.09 0.85 1.85 0.39 0.37 0.67 13.12 0.01 9.28 4.46

27

24 6.11 0.00 47.57 0.35 15.05 0.03 2.98 0.80 28.16 0.00 14.69 3.64

25 4.17 0.85 45.95 0.38 7.00 0.10 1.49 0.75 20.99 0.00 11.81 3.67

26 3.69 1.61 38.98 0.51 3.47 0.13 0.74 0.71 16.17 0.01 10.25 5.14

27 3.14 2.01 34.07 0.87 1.84 0.30 0.37 0.70 13.12 0.01 9.20 3.99

Table 2: Average Cache Miss Rate (CMR) and Retries Per Transaction

(RPT) for each cache configuration studied. Different set sizes are sepa-

rated by a horizontal line for better visualization. The CMR is reported in

percentage and is the combined sum of the read and write miss rates.

29

(set size 8). This seems to indicate that a false sharing scenario is inducing

spurious aborts.

Kmeans is an interesting case. The best line size for this application is

64 bytes. Smaller sizes (16 and 32), as well as a larger one (128), tend to

degrade performance. Looking at Table 2 we can indeed notice that the

RPT value for the configuration of 64 bytes is smaller than the respective

ones for configurations 32 and 128, specially for set sizes 8 and 16. More

interestingly, the RPT is smaller for lines of 16 bytes, despite the fact that

the performance of this particular configuration is the worst. As we will show

in the next section, the total time Kmeans spends executing transactions is

only about 35% of the total time. Therefore, we believe the impact of the

RPT is not the dominant factor. A reduced CMR is probably giving more

benefits than a lower RPT, although it is not clear from the table what is

the best ratio. For the remaining applications, a larger line size yields better

results.

The analysis conducted in this section is important because we can elimi-

nate SMC configurations that could mask our performance results presented

in Section 5.3. From this point on, we report results with the best SMC con-

figurations: 8 sets of 128 bytes for SSCA; 16 sets of 16 bytes for Genome and

Intruder; 16 sets of 64 bytes for Kmeans; 16 sets of 128 bytes for Vacation;

and 32 sets of 128 bytes for Labyrinth.

5.2. Benchmark Characterization

As discussed earlier, it was not possible to use the recommended config-

urations for all the selected STAMP applications. In order to enhance the

confidence of our results, we also instrumented the code to measure some of

30

the most important transactional characteristics for each application.

Table 3 presents, for each application, the averages for transaction length

(in µs), total time spent in transactions, read and write set sizes (in cache

lines) and the number of retries per transaction (RPT). We can notice that

the applications cover different execution scenarios. For instance, the average

transaction length varies from 870ns (SSCA2) to 7.7ms (Labyrinth). Total

time fraction spent inside transactions is also very diversified, ranging from

35% (Kmeans) to 98% (Labyrinth).

The size of the read and write sets tends to increase with the transaction

length. For instance, the application with longer transactions (Labyrinth)

also has a bigger read set (450 entries). As expected, the number of transac-

tional reads is consistently larger than the number of writes. The quantity

of retries per transaction characterizes different contention levels. Vacation,

in particular, shows a high amount of aborts per committed transaction,

whereas for Genome and SSCA2 this value is very low. Observe that, al-

though the RPT for Genome shows 0.0, this does not mean that no transac-

tion is ever aborted in this application. What it states is that the number of

aborts per committed transaction is extremely low.

When we compare the results from our characterization with the one

provided in the STAMP paper [?], we can see that they are very consistent.

We only observed a substantial discrepancy in the total time in transactions

for Vacation. We believe this is due to the different configuration we are

using for this application. The difference could also be explained by the fact

that the results reported in the STAMP paper were collected in a simulated

environment.

31

Application Tx length (µs) Tx time Read set Write set RPT

Genome 106.04 87.3% 34.8 2.4 0.00

Intruder 45.46 97.8% 74.0 1.15 0.31

Kmeans 3.54 35.5% 4.3 1.37 0.20

Labyrinth 7680.77 98% 450.5 13.8 0.68

SSCA2 0.87 85.3% 3.0 2.0 0.01

Vacation 92.26 59% 39.8 0.9 2.57

Table 3: Benchmark characterization.

5.3. Performance

To assess the performance of our prototype runtime system we compare

the transactional version of each application to a lock-based version, in which

a global lock is acquired at the beginning of a transaction and released at

the commit point. In other words, we simply replace begin atomic and

end atomic with operations to acquire and release a global lock. The SMC

configuration is kept unchanged for the lock-based version of the applications

and also uses the best parameters as determined in Section 5.1.

Results are shown normalized to the sequential version of the same appli-

cation executed on a single SPE. We do not compare the performance with

the sequential PPE version since, as discussed in Section 4.7, our runtime sys-

tem is not yet optimized for the SPE. Also, we did not attempt to optimize

any of the STAMP applications for the SPE. Therefore, comparing the SPE

execution time with the respective PPE time would be inappropriate. On

the other hand, since our results are normalized with regard to the sequential

version executed on the SPE, any optimization applied to this version will

automatically affect the performance of the transactional version.

32

Figure 6 shows performance results as the number of SPEs is increased

from 1 to 6 (recall that only 6 SPEs are available in our PS3 machine) for

the six selected STAMP applications. First of all, notice that practically all

transactional applications have a high overhead when only a single SPE is

employed, with the exception of Kmeans, which spends only 35% of the total

time in transactions.

With only one SPE, the overhead added by the read and write barriers,

along with the commit operation, is too high. As the number of SPEs is

increased, we hope that the amount of useful work performed by the system

as a whole will also increase, and compensate the overhead imposed by the

transactional primitives. Therefore, we expect to see some improvement as

more SPEs are executed in parallel.

Indeed, our system shows good scalability for applications Genome, In-

truder, and Labyrinth. The transactional versions of Genome and Labyrinth

outperform the lock-based counterparts as soon as there are 2 concurrent

SPEs running. For Labyrinth, 2 SPEs are enough for the transactional ver-

sion to also surpass the sequential version, and a speedup of 1.5x is obtained

with 6 SPEs. Genome and Intruder also presented better performance than

the sequential version starting from 4 and 6 SPEs, respectively. Also, notice

that the lock-based version does not scale for any of these applications.

The lock-based version of Kmeans already displays an almost perfect

scalability. Therefore, this application is probably not the best candidate

for transactions. However, the transactional version also scales, albeit at a

slower rate due to the extra overhead. As for the two remaining applica-

tions, they do not seem to benefit from our runtime system. In order to

33

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

1 2 3 4 5 6

S
p

e
e
d

u
p

SPEs

Genome

STM
Lock

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

1 2 3 4 5 6

S
p

e
e
d

u
p

SPEs

Intruder

STM
Lock

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6

S
p

e
e
d

u
p

SPEs

Kmeans

STM
Lock

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 3 4 5 6

S
p

e
e
d

u
p

SPEs

Labyrinth

STM
Lock

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 3 4 5 6

S
p

e
e
d

u
p

SPEs

SSCA2

STM
Lock

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

1 2 3 4 5 6

S
p

e
e
d

u
p

SPEs

Vacation

STM
Lock

Figure 6: Performance results (normalized with regard to the sequential ver-

sion executed with a single SPE).

34

 0

10

20

30

40

50

60

70

80

90

100

G
en

om
e

In
tr
ud

er

K
m

ea
ns

La
by

ri
nt

h

SSC
A
2

V
ac

at
io

n

E
x
e
c
u

ti
o
n

 B
re

a
k
d

o
w

n

Application
Transaction

Start

Commit
Read barrier
Write barrier

Figure 7: Time breakdown.

further investigate the reasons for the performance loss we re-executed the

experiments with instrumentation added to measure the overhead of each

transactional primitive. Figure 7 depicts the fraction of time for each of the

main primitives, along with the time spent outside transactions (Application)

and the time spent by transactions without the overhead of the primitives

(Transaction). The bar named “Commit” represents the time spent on both

successful and failed commits. A configuration with 6 SPEs is used to collect

the data for this figure.

It can be seen from Figure 7 that SSCA2 spends the majority of its time

doing commits. In fact, this application has extremely small transactions

35

(870ns) that execute only a small number of reads and writes per transaction.

Therefore, the cost to execute the commit operation prevails over the actual

time spent executing the transaction itself. The lock-based version, on the

contrary, seems to provide a performance gain over the sequential version.

The SSCA2 application characterizes the worst case scenario for our runtime

system. Applications with very small critical regions will probably get more

benefit from locks than software transactions.

Vacation spends a large fraction of time outside transactions and, most

importantly, exhibits a high quantity of retries per transaction (the highest

of the studied applications). Consequently, most of the time we see in the

“Transaction” bar is actually due to the re-execution of aborted transactions.

Since the amount of useful work is low, the application does not scale with the

use of transactions, nor does it with locks. Vacation seems to indicate that

applications with a high level of contention are not the best candidates for

our runtime. This is understandable, since our runtime adopts an optimistic

approach to concurrency which works better when conflicts are not common.

Figure 7 also elucidates why applications Genome, Intruder and Labyrinth

display the best results with the transactional runtime. Notice that the

actual transactional time for these applications, not counting the overhead,

is higher than the respective time for the other applications (55%, 32%, and

94%, respectively) 1. Particularly, Labyrinth spends most of its time with

only transactions and achieves a relatively good speedup (1.5x). Moreover,

Figure 7 indicates that the read barrier and the commit operation have the

1Vacation actually spends most of its time re-executing aborted transactions and there-

fore is not considered.

36

highest overhead, and should be the primary target for optimizations.

5.4. Discussion

The overhead added by software transactional memory runtimes is well

known for homogeneous architectures and has attracted a lot of criticism, to

the point of STM being regarded as a research toy [34]. Recently, a thor-

ough investigation of STM performance showed that STM can outperform

sequential code with four threads on 13 of the 17 studied applications on an

x86 system [35]. One key point when evaluating transactional behavior is

how well the system scales. For instance, compiler instrumentation may hurt

performance, but will not affect the scalability [35].

In this section we discuss how our results compare with the ones generally

obtained for homogeneous architectures and argue that the proposed runtime

for a heterogeneous architecture displays similar characteristics, therefore

providing evidence for its effectiveness. Figure 8 depicts the speedup over

sequential execution of the six studied applications using the TL2 implemen-

tation provided with the STAMP benchmark. The results were collected

with a dual Xeon E5405 machine (8 cores available), 4GB of RAM, running

at 2GHz in a typical 32-bit Linux operating system. We refer to this con-

figuration as the x86 machine in the following discussion. We also use PS3

machine for the heterogeneous system. The number of cores employed in the

x86 experiments varies from 1 to 8.

The first characteristic that both results from Figure 6 (PS3 machine)

and Figure 8 (x86 machine) share is the high single core overhead. For in-

stance, the performance loss is about 70% for the homogeneous Vacation and

80% for the heterogeneous SSCA2. With only two exceptions (homogeneous

37

G
en

om
e

In
tr
ud

er

K
m

ea
ns

La
by

ri
nt

h

V
ac

at
io

n

SSC
A
2

S
p

e
e
d

u
p

1
2
4
8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
p

e
e
d

u
p

1

Figure 8: Speedup of the studied applications on a dual quad-core machine.

Labyrinth and heterogeneous Kmeans), all applications show significant per-

formance losses in the single core case.

Figure 8 also reveals that the transactional code starts to outperform the

sequential code when 8 cores are used. If 4 cores are considered instead,

only Genome and Labyrinth produce a substantial speedup. Therefore, it

can be assumed that the minimum number of cores from which the x86 ma-

chine shows its real benefits is 8. If we examine the PS3 machine results

(Figure 6) we can notice a similar trend: with 6 cores, 4 out of the 6 appli-

cations exhibit better performance with the transactional runtime. The only

two exceptions are SSCA2 and Vacation since, as explained in the previous

section, they either have extremely small transactions (SSCA2) or a high

retries per transaction ratio (Vacation). This behavior is actually the main

performance difference between the machines: the cost to initialize and com-

38

mit/abort a transaction is higher on the PS3 machine due to its segregated

memory architecture and communication penalties.

Looking at the actual speedup numbers we can see that they are more

favorable to the x86 machine. For instance, the speedup of Labyrinth with 4

cores is 2.5x on the x86 and 1.5x on the PS3 machine with 6 cores. Besides

the distinct architecture, there are at least two reasons for this. First, the

x86 results (Figure 8) use a manually instrumented version of the STAMP

benchmark, whereas our approach uses a compiler to instrument the code.

Second, as briefly discussed in Section 4.7, our prototype implementation is

not tuned for performance. Therefore, we envision a number of different paths

to improve its efficiency: (i) compiler optimizations to reduce the number of

compiler-induced overhead as well as the memory ordering overhead, such

as suggested in [12, 36]; (ii) SPE-specific optimizations: average speedups of

9.9x are reported in the literature with simdization [30].

Of all the aspects considered in the comparison with the x86 machine, we

believe that scalability is the most important one. Figure 8 shows that all x86

applications scale well, even the one that did not achieve concrete speedup

(SSCA2). Likewise, our results from Figure 6 show that, with the exception

of SSCA2 and Vacation, the PS3 applications exhibit good scalability. Given

the fact that our system uses a compiler-assisted approach and that com-

piler instrumentation may degrade performance (but not scalability) [35], we

believe that the obtained results are promising.

39

6. Conclusions

Designing heterogeneous architectures is one promising approach in the

multicore era, but the lack of appropriate tools and programming models

have made it difficult to develop new multithreaded applications for such

hardware.

In order to facilitate the development of concurrent software, we inves-

tigated in this article the transactional model and presented the design and

implementation of a transactional runtime system for the Cell/BE architec-

ture. Our system provides compiler support so that read and write barriers

are automatically inserted into the code, reducing coding time and mistakes.

We evaluated a prototype implementation of the proposed system using

the STAMP benchmark suite and obtained promising results. More precisely,

our system exhibited good scalability for applications with moderate to low

contention levels, and whose transactions are not too small. Moreover, we be-

lieve that a small performance loss is justified given the ease of programming

provided by the transactional model.

7. Acknowledgements

This work was partially funded by CNPq, FAPESP and IBM.

References

[1] K. Olukotun, L. Hammond, The future of microprocessors, Queue 3 (7)

(2005) 26–34.

[2] R. Kumar, D. M. Tullsen, N. Jouppi, P. Ranganathan, Heterogeneous

chip multiprocessors, IEEE Computer 38 (11) (2005) 32–38.

40

[3] C. R. Johns, D. A. Brokenshire, Introduction to the Cell broadband

engine architecture, IBM Journal of Research and Development 51 (5)

(2007) 503–519.

[4] T. Chen, R. Raghavan, J. N. Dale, E. Iwata, Cell broadband engine

architecture and its first implementation: A performance view, IBM

Journal of Research and Development 51 (5) (2007) 559–572.

[5] T. Harris, J. Larus, R. Rajwar, Transactional Memory, 2nd Edition,

Morgan & Claypool Publishers, 2010.

[6] J. Larus, C. Kozyrakis, Transactional memory, Communications of the

ACM 51 (7) (2008) 80–88.

[7] D. Dice, O. Shalev, N. Shavit, Transactional Locking II, in: 20th Inter-

national Symposium on Distributed Computing, 2006, pp. 194–208.

[8] C. C. Minh, J. Chung, C. Kozyrakis, K. Olukotun, STAMP: Stanford

Transactional Applications for Multi-Processing, in: Proceedings of the

IEEE International Symposium on Workload Characterization, 2008,

pp. 35–46.

[9] M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer, Software transac-

tional memory for dynamic-sized data structures, in: Proceedings of the

22nd Annual Symposium on Principles of Distributed Computing, 2003,

pp. 92–101.

[10] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.

Scherer, M. L. Scott, Lowering the overhead of nonblocking software

41

transactional memory, in: First ACM SIGPLAN Workshop on Lan-

guages, Compilers, and Hardware Support for Transactional Comput-

ing, 2006.

[11] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, B. Hertzberg,

McRT-STM: A high performance software transactional memory system

for a multi-core runtime, in: Proceedings of the 11th Symposium on

Principles and Practice of Parallel Programming, 2006, pp. 187–197.

[12] T. Harris, M. Plesko, A. Shinnar, D. Tarditi, Optimizing memory trans-

actions, in: Proceedings of the ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, 2006, pp. 14–25.

[13] R. Guerraoui, M. Kapalka, On the correctness of transactional memory,

in: Proceedings of the 13th Symposium on Principles and Practice of

Parallel Programming, 2008, pp. 175–184.

[14] P. Felber, C. Fetzer, T. Riegel, Dynamic performance tuning of word-

based software transactional memory, in: Proceedings of the 13th Sym-

posium on Principles and Practice of Parallel Programming, 2008, pp.

237–246.

[15] A. Dragojevic, R. Guerraoui, M. Kapalka, Stretching transactional

memory, in: Proceedings of the ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, 2009, pp. 155–165.

[16] IBM, Software development kit for multicore acceleration version 3.1,

programmer’s guide (2008).

42

[17] J. Balart, M. Gonzalez, X. Martorell, E. Ayguade, Z. Sura, T. Chen,

T. Zhang, K. O’Brien, K. O’Brien, A novel asynchronous software cache

implementation for the Cell-BE processor, in: 20th International Work-

shop on Languages and Compilers for Parallel Computing, 2008, pp.

125–140.

[18] M. Gonzalez, N. Vujic, X. Martorell, E. Ayguade, A. E. Eichenberger,

T. Chen, Z. Sura, T. Zhang, K. O’Brien, K. O’Brien, Hybrid access-

specific software cache techniques for the Cell BE architecture, in: Pro-

ceedings of the 17th International Conference on Parallel Architectures

and Compilation Techniques, 2008, pp. 292–302.

[19] G. Senthil, S. Gudla, P. K. Baruah, Exploring software cache on the

Cell BE processor, in: International Conference on High Performance

Computing, 2008.

[20] S. Seo, J. Lee, Z. Sura, Design and implementation of software-managed

caches for multicores with local memory, in: Proceedings of the 15th

International Symposium on High-Performance Computer Architecture,

2009, pp. 55–66.

[21] T. Chen, T. Zhang, Z. Sura, M. G. Tallada, Prefetching irregular ref-

erences for software cache on Cell, in: Proceedings of the International

Symposium on Code Generation and Optimization, 2008, pp. 155–164.

[22] J. Lee, S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura, J. Kim, S. Han,

COMIC: A coherent shared memory interface for Cell BE, in: Proceed-

43

ings of the 17th International Conference on Parallel Architectures and

Compilation Techniques, 2008, pp. 303–314.

[23] M. Olszewski, J. Cutler, J. G. Steffan, JudoSTM: A dynamic binary-

rewriting approach to software transactional memory, in: Proceedings of

the 16th International Conference on Parallel Architectures and Com-

pilation Techniques, 2007, pp. 365–375.

[24] M. F. Spear, M. M. Michael, C. von Praun, RingSTM: Scalable transac-

tions with a single atomic instruction, in: Proceedings of the 20th An-

nual ACM Symposium on Parallel Algorithms and Architectures, 2008,

pp. 275–284.

[25] L. Dalessandro, M. F. Spear, M. L. Scott, NOrec: Streamlining STM by

abolishing ownership records, in: Proceedings of the 15th Symposium

on Principles and Practice of Parallel Programming, 2010, pp. 67–78.

[26] R. L. Bocchino, V. S. Adve, B. L. Chamberlain, Software transactional

memory for large scale clusters, in: Proceedings of the 13th Symposium

on Principles and Practice of Parallel Programming, 2008, pp. 247–258.

[27] C. Kotselidis, M. Ansari, K. Jarvis, M. Lujan, C. Kirkham, I. Watson,

DiSTM: A software transactional memory framework for clusters, in:

Proceedings of the 37th International Conference on Parallel Processing,

2008, pp. 51–58.

[28] J. Lee, S. Seo, J. Lee, A software-SVM-based transactional memory for

multicore accelerator architectures with local memory, in: Proceedings

44

of the 19th International Conference on Parallel Architectures and Com-

pilation Techniques, 2010, pp. 567–568.

[29] H. Sutter, J. Larus, Software and the concurrency revolution, Queue

3 (7) (2005) 54–62.

[30] A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu, T. Chen, P. H.

Oden, D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang,

P. Zhao, M. Gschwind, Optimizing compiler for the CELL processor, in:

Proceedings of the 14th International Conference on Parallel Architec-

tures and Compilation Techniques, 2005, pp. 161–172.

[31] C. Y. Lee, An algorithm for path connections and its applications, IRE

Transactions on Electronic Computers EC-10 (3) (1961) 346–365.

[32] A. Roy, S. Hand, T. Harris, A runtime system for software lock elision,

in: Proceedings of the 4th European Conference on Computer Systems,

2009, pp. 261–274.

[33] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,

C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, E. Riviere, Eval-

uation of AMD’s advanced synchronization facility within a complete

transactional memory stack, in: Proceedings of the 5th European Con-

ference on Computer Systems, 2010, pp. 27–40.

[34] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,

S. Chatterjee, Software transactional memory: Why is it only a research

toy?, Communications of the ACM 51 (11) (2008) 40–46.

45

[35] A. Dragojevic, P. Felber, V. Gramoli, R. Guerraoui, Why STM can be

more than a research toy, Communications of the ACM 54 (4) (2011)

70–77.

[36] M. F. Spear, M. M. Michael, M. L. Scott, P. Wu, Reducing memory

ordering overheads in software transactional memory, in: Proceedings

of the International Symposium on Code Generation and Optimization,

2009, pp. 13–24.

46

