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Abstract—The well-known drawbacks imposed by lock-based synchronization have forced researchers to devise new alternatives
for concurrent execution, of which transactional memory is a promising one. Extensive research has been carried out on Software
Transaction Memory (STM), most of all concentrated on program performance, leaving unattended other metrics of great importance
like energy consumption. This letter presents a thorough evaluation of energy consumption in a state-of-the-art STM. We show that
energy and performance results do not always follow the same trend and, therefore, it might be appropriate to consider different
strategies depending on the focus of the optimization. We also introduce a novel strategy based on dynamic voltage and frequency
scaling for contention managers, revealing important energy and energy-delay product improvements in high-contended scenarios.
This work is a first study towards a better understanding of the energy consumption behavior of STM systems, and could prompt
STM designers to research new optimizations in this area, paving the way for an energy-aware transactional memory.

Index Terms—Parallel Architectures, Multiprocessor Systems, Transactional Memory, Power Management, Energy Consumption.

1 INTRODUCTION

HE shift towards multicore processors and their subse-
T quent mainstream adoption have drastically increased the
need for better and effortless methods for building concurrent
software. The prevalent parallel shared-memory programming
model employs locks and condition variables as the stan-
dard synchronization primitives. The well-known drawbacks
imposed by lock-based synchronization [13] have forced re-
searchers to devise new alternatives of which transactional
memory [5] is a promising one. The implementation substrate
for transactional memory can be realized entirely via software
(STM), through hardware components (HTM) or as a combina-
tion of both hardware and software (hybrid approach). In this
letter, we shall focus our attention specifically on STM.

Extensive research has been carried out on the design space
of STM. To evaluate a proposed implementation, researchers
have invariably concentrated on performance, usually by mea-
suring the system throughput in the form of transactions per
second. We argue that, if STM is to become mainstream, other
factors should be equally taken into account when devis-
ing a new design. In particular, energy-efficiency is of great
importance and must be traded off with performance. This
is specially true for embedded systems, where the energy
consumption is closely related to battery lifetime. It is also of
increasing interest in the non-mobile arena, such as data centers
and desktop environments [4], [1].

This work is a first step towards a better understanding of
the energy behavior in STM systems. We make the follow-
ing contributions: (i) first characterization of a state-of-the-art
STM system based on the TL2 algorithm [2] and the STAMP
suite [11]; (ii) a novel strategy based on dynamic voltage and
frequency scaling (DVES) for contention managers, intended
to enhance both performance and energy consumption of
applications with high abort rates. Our results reveal average
improvements of 45% on energy consumption for those appli-
cations, achieving maximum reductions of up to 87%.
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2 METHODOLOGY

The energy characterization methodology herein described
attempts to profile the energy consumption of an STM system
in terms of its basic components. A number of transactional
memory approaches have been proposed in the literature [5]
and, though distinct, they are mostly built upon the same
primitives, namely, TxStart, TxCommit, TxLoad, and TxStore.
In addition to these primitives, we distinguish the costs due
to the re-execution of aborting transactions (rollback) as well
as the costs related to the contention management scheme.
For convenience, a category labeled Other is introduced and
include other minor transactional operations such as memory
management (transactional allocs and frees). Notice that we
include TxStart in this category in the experiments.

2.1 Simulation Platform

A cycle-accurate MPSoC simulation platform [9] is used to
collect accurate energy and performance numbers. Its main
components are: (i) a variable number of ARMv7 processors,
each with a 8KB, 4-way I-cache and a 4KB, 4-way D-cache;
(ii) their private memory (12MB each); (iii) a shared memory
(16MB); (iv) a hardware semaphore module, providing sup-
port for test-and-set operations; and (v) an AMBA AHB bus
interconnect. The platform models have been characterized on
a 0.13-pum technology by STMicroelectronics and validated on
silicon implementations of the various components. It has also
been used in numerous papers in the literature (see [7], for
instance). Two important observations are worth mentioning.
Firstly, the memory architecture is based on SRAM and, hence,
has lower latency and is more energy-efficient as compared
to DRAM [10]. Secondly, cache coherency is not enforced by
hardware: private reads and writes are cacheable, while shared
accesses are not. As showed by others in [8], this approach
appears to be competitive in terms of performance and energy
with respect to hardware-based cache coherence. Although the
platform is more suited for embedded systems, we believe
the results shown in this letter still hold for general CMP
architectures.
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Fig. 1. Energy and speedup figures for the STAMP applications using the lazy version of TL2 with linear backoff. Both energy and speedup are

normalized to that of the transactional single-core case.

2.2 Energy Profiling Procedure

In order to proceed with the characterization process, we need
to distinguish the energy consumed by the STM infrastructure
from the energy consumed by the application itself. The energy
profiling phase is performed as follows:

o API profiling: after entering the STM code, through a call to
its API, the energy measurement of the primitive is activated.
During this period, the energy consumed by all components
of the platform (processor, caches, main memory and bus) are
monitored and recorded for each primitive. Prior to returning
to the application code, the measurement for that primitive is
deactivated and recorded.

e Application profiling: the application starts and energy
measurement is initially activated. Prior to any call to the
STM API the measurement is deactivated, recorded, and then
reactivated when returning to the application code. Similar as
above, all platform’s components are taken into account and
the resulting aggregate energy is recorded.

¢ Rollback profiling: whenever a transaction aborts, all energy
recorded since the last TxStart, including the primitives and
application code is subsumed under the term rollback. The
only exception is the energy due, specifically, to the contention
manager, which is tagged differently (backoff).

The procedure aforementioned allow us to assess individu-
ally the inherent energy costs of the application and also the
overhead for each of the STM primitives. This facilitates the
identification of possible bottlenecks in STM systems and could
prompt STM designers to devise optimizations and improve
their implementations, so as to reduce the energy footprint
imposed by the STM approach. Also notice that the methodol-
ogy is general enough and could be seamlessly applied to any
STM implementation exposing a compatible APL

2.3 TL2 and STAMP

We make use of the TL2 implementation distributed with the
STAMP benchmark suite [11]. Besides the original lazy version
(TL2-lazy), it also features an eager version (TL2-eager) wherein
locks are acquired during TxStore and memory is updated in
place. Two contention management strategies based on backoff
are provided (linear and exponential), being triggered after three
consecutive aborts. Porting the x86 TL2 implementation and
the STAMP applications to the simulation platform was mostly
straightforward, requiring attention when mapping shared
data into the platform’s shared space. The only significant
modification made to the TL2 code was that we reduced the
size of the hash table to 256KB (originally 4MB). The CAS

operation required by the STM algorithm is built upon the test-
and-set primitive provided by the platform. All 8 STAMP ap-
plications are used in our experiments, characterizing different
transactional scenarios with regard to transaction length, read
and write set sizes, transaction time and contention level. The
input parameters are the recommended ones for running in
simulation environments. We show the results for 10 applica-
tion variants, following the nomenclature used in the original
STAMP paper [11].

3 ENERGY CHARACTERIZATION & ANALYSIS

The evaluation of STM designs has traditionally focused on
performance. If energy consumption could directly be pre-
dicted from run time there would be no motivation not to con-
tinue evaluating STM systems purely on performance. There-
fore, it is of the utmost importance to provide evidence that
disassociates energy from speedup, as suggested by Figure 1.
As can be seen from this figure, increasing the number of
cores invariably causes more energy to be consumed (except for
bayes with 4 cores). However, speedup does not always follow
the same trend: while it does increase for some applications
(such as genome+ and kmeans), it actually decreases for others
(most notably, intruder+). The main reason for the latter, as
will be seen in more detail shortly, is the excessive number
of aborts and consequent rollback time wasted as the number
of cores increases. Although not shown due to lack of space,
we observed the same behavior with TL2-eager. Altogether,
Figure 1 offers a compelling evidence that energy consumption
cannot be predicted directly from performance.
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Fig. 2. STM energy breakdown for both TL2-lazy and TL2-eager in a
single-core configuration. Energy is normalized to that of the sequential
code.
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Fig. 3. STM energy breakdown for both TL2-lazy and TL2-eager in an 8-core configuration, with linear and exponential backoff policies. Energy is

normalized to that of the sequential code.

Software transactions are known for introducing perfor-
mance overhead due to the data versioning and conflict detec-
tion schemes. In order to analyze the energy impact, Figure 2
shows the energy breakdown with a single processor. A couple
of observations can be made regarding this figure. Firstly, some
applications seem not to have any significant overhead. More
specifically, bayes, labyrinth+, and yada have long transac-
tions and the overhead due to transactional primitives is low
(a small TxCommit overhead can be noticed in yada-lazy).
The scenario is different for kmeans, however. This particular
application makes extensive use of floating-point operations,
which are emulated via software in our platform. As it turns
out, the overhead due to these operations tends to hide the cost
one would normally see from the transactional primitives (this
very same behavior happens, although in a much lesser extent,
to yada). Secondly, the application code overhead is significant
(about 2x) for ssca2, vacation and intruder+. The main
reason for this is that the compiler does a very good job in
optimizing the sequential code, whereas it cannot do much
in the transactional case due to the insertion of the primitives.
Lastly, it can be noticed that the TxStore operation is cheaper in
the lazy configuration, while TxCommit is cheaper in the eager
version (recall that locking is performed during TxStore in TL2-
eager, and during TxCommit in TL2-lazy). Also, the cost of the
TxLoad operation is cheaper for TL2-eager, since the read value
does not need to be looked up in the write set (TL2-lazy uses
a Bloom filter to avoid iterating over the write set).

While providing some insight into the energy consump-
tion of STM, the single-core breakdown does not exhibit
the percentage of energy spent with aborts and rollbacks.
To remedy the situation, Figure 3 shows the energy break-
down for an 8-core configuration. First off, notice that the
energy overhead for kmeans is still negligible. This is due
to its low transaction time, short transactions and good load
balancing. Again, the excessive use of floating-point oper-
ations obscure the appearance of any overhead caused by
the transactional primitives. The low abort rate displayed
by applications bayes (~7.4%), genome+ (~2.2%), ssca2
(~0.2%), and vacation-low (~4.4%) precludes most of the
overheads caused by backoff and rollback from showing off.
Despite having a relatively high abort rate (~30%), application
labyrinth+ does not have significant backoff time since its
long-running transactions and consequent rollback time do not
allow the backoff mechanism to be activated (recall that it is
only activated after 3 retries). The remaining 3 applications
(vacation-high, yada, and intruder+) show both back-
off and rollback costs in different proportions, according to
their abort rates. We observe that, most notably in yada and

intruder+, the energy spent while backing off and rolling
back dominates the overall energy consumption, even though
no useful work is done during those periods. These two
operations usually correlate to each other and depend heavily
on the policies adopted for contention management. Thus, as
the results show, there is considerable room for improvement,
which is exploited by the strategy introduced in the next
section.

4 DVFS-BASED STRATEGY

We leveraged TL2’s original contention management policies
in order to exploit the slack available in applications displaying
high contention. For that purpose, we adopted a strategy based
on dynamic voltage and frequency scaling [4]. Since power
depends quadratically (linearly) on voltage (frequency), the
power-efficiency could be theoretically improved cubically.
Any contention manager causing transactions to wait are
eligible to use this technique. The strategy, which is a simple,
but effective one is as follows: prior to entering the backoff
mode, the processor is put in a low-power mode by reducing
both the frequency and voltage. Then, the processor stalls for
an amount of time proportional to the number of retries of the
transaction attempting to commit. Hence, the energy wastage
is reduced without degrading performance significantly, given
that such periods are considered idle time and perform no
useful work. Upon completion of the backoff period, the
processor frequency/voltage is rescheduled to full speed so
as to avoid impacting on the overall performance. Since the
DVFES strategy requires switching the processor between dif-
ferent states, one should be aware of the extra overhead when
applying the mechanism so as not to degrade the overall
performance. Switching to and from low-power mode incurs,
in our simulation environment, a 2-cycle penalty, causing the
frequency to be scaled between 200MHz and 1.56MHz.
Figure 4 presents the results achieved by the proposed
scheme for STAMP. In order to correlate the impact on both
energy and performance, the numbers are exposed in terms of
energy and energy-delay product (EDP). We make four major
observations about this figure. Firstly, for those applications
displaying medium-to-high contention, namely, intruder+,
yada, and vacation-high, the scheme effectively reduced
the energy consumption. On average, the energy was reduced
by a ~45% factor, and up to 87% for intruder+. As a positive
side-effect of this optimization, the abort rate was reduced,
since the aborted transactions stayed longer (due to lower
frequencies) in backoff mode thus avoiding a premature re-
execution which was doomed to fail. Consequently, perfor-
mance was increased by ~13% (on average) and the resulting
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Fig. 4. Energy and EDP figures for the proposed DVFS-based strategy in an 8-core configuration with both linear and exponential backoffs. Results

are normalized to those presented in Figure 3.

EDP decreased substantially. Secondly, some applications expe-
rienced negative results with some configurations of the DVFS-
based exponential backoff. In genome+-lazy, ssca2-lazy
and ssca2-eager, there is very low contention, which incurs
entering the backoff mode just a handful of times. However,
due to the low abort rates (<3%), the time spent backing off
is increased more than necessary, counteracting the benefits of
running it in low-power mode. Moreover, since there is no
slack to be exploited, both energy and EDP are slightly but
adversely affected by this behavior. A similar explanation holds
for the EDP increase in vacation-low and vacation-high
(both with exponential backoff). But, contrary to the previous
applications, there is a little slack available, which is properly
exploited, as it can be perceived by the decrease in the total
energy. Notice that the same applications are not influenced
by the mentioned behavior when using the linear backoff
scheme. Thirdly, for those applications displaying low STM
energy overhead, namely, kmeans-high, kmeans-1low, and
labyrinth+, the achieved results were virtually the same.
This happens due to the small number of retries per trans-
action, which precludes the processor from entering in backoff
mode. Finally, for bayes, even though there is only a thin mar-
gin of rollback and backoff available, the proposed scheme nearly
halved that amount, resulting in an average improvement of
~6% and ~20%, in total energy and EDP, respectively.

5 RELATED WORK

As previously mentioned, current evaluation of STM designs
primarily addresses performance improvements over tradi-
tional locks. The usual performance metric is given by the
number of transactions executed per unit of time (i.e., through-
put). We are not aware of any methodology for estimating the
energy consumption of STM systems. The works on power
dissipation in HTM systems are the closest to ours. More-
shet et al. [12] initially investigated the energy consumed by
transactions in a typical multiprocessor environment. While
their results suggested that HTM has an advantage in terms
of energy consumption over locks, one should notice that
only micro-benchmarks were employed in the experiments.
More recently, Ferri et al. [3] evaluated the impact of energy
consumption in an embedded setting. They also proposed the
use of a scratchpad memory for transaction checkpointing and
a technique that shuts down the transactional cache in case
of under-utilization. Our DVFS-based approach resembles the
strategy used by the thrifty barrier of Li et al. [6], in which a
processor is forced into a low-power state when spinning on
synchronization barriers.

6 CONCLUSIONS AND FUTURE WORK

This letter presented, for the first time, the energy charac-
terization of a state-of-the-art STM using the STAMP bench-
mark suite. We thoroughly evaluated the impact on energy
consumption due to STM and quantified the energy costs of
the primitives in the adopted time-based STM implementation.
Furthermore, we proposed a novel energy-aware DVFS-based
strategy for contention managers in order to exploit the slack
available in applications. For those displaying high-contention
total energy (EDP) was reduced, on average, by 45% (45%),
achieving maximum improvements of 87% (96%). This work
is a first study towards a better understanding of the energy
consumption behavior of STM systems. Future research will
address how the STM algorithm itself could be changed in
order to provide even better energy efficiency. We also plan to
devise an energy macromodel for STM in order to allow energy
analysis with the help of more abstract simulation models.
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