
Automatic Retargeting of Binary Utilities for Embedded Code Generation

Alexandro Baldassin, Paulo Centoducatte, Sandro Rigo
State University of Campinas – P.O. Box 6176 - 13084-971, Campinas, Brazil

{alebal, ducatte, sandro}@ic.unicamp.br

Daniel Casarotto, Luiz C. V. Santos, Max Schultz, Olinto Furtado
Federal University of Santa Catarina – P.O. Box 476 - 88010-970, Florianopolis, Brazil

{casaroto, santos, max, olinto}@inf.ufsc.br

Abstract

Contemporary SoC design involves the proper selection
of cores from a reference platform. Such selection im-
plies the design exploration of alternative CPUs, which
requires the generation of binary code for each possible
target. However, the embedded computing market shows
a broad spectrum of instruction-set architectures, ranging
from micro-controllers to RISCs and ASIPs. As a conse-
quence, binary utilities cannot always rely on pre-existent
tools within standard packages. Besides, the task of manu-
ally retargeting every binary utility is not acceptable under
time-to-market pressure. This paper describes a technique
for the automatic generation of binary utilities from an ab-
stract model of the target CPU, which can be synthesized
from an arbitrary ADL. The technique is based upon two
key mechanisms: model provision for tool generation (at the
front-end) and automatic library modification (at the back-
end). To illustrate the technique’s automation effectiveness,
we describe the generation of assemblers, linkers and disas-
semblers. We have successfully compared the files produced
by the generated tools to those produced by conventional
tools. Moreover, to give proper evidence of retargetability,
we present results for MIPS, SPARC, PowerPC and i8051.

1 Introduction

The huge supply of hardware made available by state-
of-the-art VLSI technologies, combined with the increas-
ing demand on embedded system applications, gave rise to
Systems-on-Chip (SoCs) [3]. SoCs can be built with gen-
eral purpose processors or Application-Specific Instruction-
set Processors (ASIPs). Platform-based SoC design [13] is
the methodological response to the high non-recurring engi-
neering costs of deep submicron VLSI technologies. Given
a chosen platform, design exploration is crucial to fulfill not
only functional requirements, but also real-time, low-power
and code-size constraints.

Design exploration may require code generation for sev-
eral alternative CPUs, possibly including ASIPs. In this
context, the availability of binary utilities for the most pop-
ular general purpose processors does not help much. Be-
sides, the task of developing a new binary utility for each
new explored CPU would not be affordable under the time-
to-market pressure. A widely explored approach consists
in modelling the processor in an Architecture Description
Language (ADL) which can drive the design space explo-
ration and automatically generate software tools. Figure 1
shows the process of exploring alternative solutions with the
help of an ADL. Given an ADL description of the CPU, the
generated tool chain allows the execution of the application
code (on a CPU simulation model) and its iterative evalua-
tion until the requirements are met.

Target CPU

description (ADL)

Changes in current CPU

or choice of a new one

Application

code

Compiler
 Assembler
 Link editor
 Simulator

Tool generator
 Requirements

met ?

Figure 1. ADL-based CPU exploration flow

This paper addresses the automatic generation of binary
utilities (assemblers, linkers and disassemblers) from anab-
stract model of the target CPU, which can be generated from
its description written in an arbitrary ADL. A new reloca-
tion handling mechanism is proposed along with a memory
layout model. The remainder of this paper is organized as
follows. Section 2 addresses related work. Section 3 defines
the proposed abstract model. Section 4 describes our tech-
nique for automatically retargeting binary utilities. Section
5 summarizes experimental results. Our main conclusions
are drawn in Section 6 along with our perspectives of future
work.

2 Related Work
While simulator and compiler generation have been ex-

tensively discussed in the context of ADL toolkit genera-
tion [8], the same attention has not been given to the genera-
tion of binary utilities. ISDL [5] and nML [6] are among the
first ADLs to mention assembler and disassembler genera-
tion, but neither a description of the underlying technique
nor experimental results are shown. Sim-nML [9] assem-
bler generator uses the GNUlex andyacc tools to produce
the assembly language’s lexer and parser. Relocation han-
dling is driven by an external configuration file describing
the inner working of the resolution mechanism. The LISA
tool-suite [7] provides also a link editor. The linking pro-
cess is guided by a command file which specifies the target
memory model.

The SLED language [11] defines constructs to describe
instruction set architectures. From a SLED description, the
New Jersey Machine-Code Toolkit [10] generates encoding
and decoding routines which can be used by binary utility
programs. However, no front-end support (such as the pars-
ing of source files) is provided.

Abbaspour et al. [1] present systematic techniques to re-
target the GNU Binary Utilities. A formal notation is used
to capture the Instruction Set Architecture (ISA) and relo-
cation information. A brief description of the retargeting
algorithms is given. Experimental results are reported for
the SPARC architecture. Although an Intel 386 specifica-
tion is mentioned, no supporting results are shown. It is
not possible to foresee if the proposed framework is generic
enough to achieve the same results for a CPU which has not
yet been ported to the GNU Binutils package.

Like in [1], our work is built upon an ADL-independent
notation and relies on GNU Binutils as implementation in-
frastructure. However, our approach differs from theirs
in the following aspects: our Application Binary Interface
(ABI) model allows specifying the memory layout (see Sec-
tion 3.2), an important feature for embedded system ap-
plications; our automatic generation of relocation actions
keeps the user from getting involved in low-level details;
our relocation handling mechanism is more general (it han-
dles ISA allowing multiple choices for operand encoding,
as will be seen in Section 4.1). Besides, as opposed to [1],
our technique was able to retarget an ISA with no previous
port in the GNU Binutils package: the i8051.

3 Abstract model
Our retargeting algorithms rely on an abstract model that

captures both the target ISA and the ABI. The model delib-
erately abstracts from ADL syntax details, thereby releasing
our tools from being tied to a specific ADL. To make the
model synthesizable from an arbitrary ADL, it is formally
defined in the well-known BNF notation. Besides, to ease
its interpretation, it is also illustrated by means of examples.
For the sake of self-containment, the model description is
limited to the aspects required by the generation of binary
utilities. For instance, instruction behavior and timing are

not addressed in this paper. Moreover, the ABI description
focuses on relocation information and memory layout.

3.1 ISA description
In our model, the ISA description captures information

commonly available in most CPU manuals. The model is
based upon notions like instruction, operand and modifier.
The following subset of syntax rules (in BNF format) spec-
ifies these notions:

〈operand-def〉 ::= operand oper-id{ ‘ ‘mapping definition ’’ }

〈modifier-def〉 ::= modifier modifier-id{ ‘ ‘modifier code ’’ }

〈instruction-def〉 ::= instruction insn-id{ 〈format-desc〉 ;
(〈syntax-desc〉) : (〈operand-encoding〉) ;
〈opcode-encoding〉 }

〈format-desc〉 ::= field-id : constant, 〈format-desc〉
| field-id : constant

〈syntax-desc〉 ::= mnemonic-id〈oper-type-list〉

〈oper-type-list〉 ::= 〈qualifier〉 〈oper-type〉 , 〈oper-type-list〉
| 〈qualifier〉 〈oper-type〉

〈oper-type〉 ::= oper-id| imm | addr 〈modifier〉 | exp 〈modifier〉

〈modifier〉 ::= << modifier-id(constant) | empty

〈operand-encoding〉 ::= field-id , 〈operand-encoding〉 | field-id

〈opcode-encoding〉 ::= field-id = constant, 〈opcode-encoding〉
| field-id = constant

〈qualifier〉 ::= # | $ | empty

A modifieris a function that transforms a given operand
value. Within the modifier code (written in C language),
four variables are pre-defined to specify the transformation:
input is the original operand,address stores the instruction
location (computed at assembly or linking time),parm is
an optional parameter, andoutput returns the transformed
operand.

An operand typespecifies the nature of a given instruc-
tion field. At assembly or linking time, an operand type is
tied to the binary value stored in a field and may undergo
the action of a modifier, yielding a substitute binary value
to be edited in the field.

Modifier and operand type are key notions to the pro-
cess of replacing symbolic references with actual addresses.
This process, known asrelocation, is usually carried out by
linkers. In our model, the necessary relocation information
for automatic generation of binary utilities is captured by
modifiers and operand types.

Since some operand types are common to a large num-
ber of architectures, they are provided in our model asbuilt-
in types: imm for immediate values,addr for symbolic ad-
dresses, andexp for expressions involving immediates and
symbols.

Let’s illustrate the model with the example in Figure 2,
written according to the specified syntax. Line 1 describes
the mapping for operand typereg , where the symbolsr0 ,
r1 , . . . , r7 are mapped to the values0, 1, . . . , 7. Line 3
defines the modifierR, which computes PC-relative trans-
formations. The modifier’s result (output) is computed by
subtracting the current location (address) from the operand
value (input) and by adding an offset (parm). Lines 5 to 9

2

1. operand reg { r[0..7] = [0..7]; }
2.
3. modif ier R { output = input - address + parm; }
4.
5. i ns t ruc t ion cjne {
6. op:5, rd:3, dat:8, targ:8;
7. (cjne reg, #imm, addr << R(3)):(rd, dat, targ);
8. op=0x17
9. }

Figure 2. Fragment of an i8051 model

define the instructioncjne . Line 6 defines the instruction
format as a list of fields and associated bit sizes. Line 7
defines the assembly syntax and operand encoding (where
cjne is the instruction mnemonic). In line 7, operandsreg ,
imm andaddr are bound to the instruction fieldsrd , dat and
targ , respectively. (The character# is a qualifier required
to precede an immediate field in the i8051 assembly). Note
that the modifierR (with an offset of 3) is applied to operand
typeaddr , since the value encoded must be relative toPC+3.
Finally, in line 8, the constant value0x17 is assigned to field
op of instructioncjne .

3.2 Memory layout
Programmers usually split software into modules which

can be compiled individually. The resulting binary files
(generated by the assembler) are calledrelocatable object
files. In addition to instructions and data, they also supply
relocation information (to be used by the linker). Anexe-
cutable object fileis created by linking relocatable modules.
During the process, the linker must determine how code and
data sections must be grouped and which are their final ad-
dresses. This results in a memory mapping, which is cap-
tured in our model by the notion ofsegment, as specified by
the following subset of syntax rules (in BNF format):

〈segment-def〉 ::= segment segment-id{
(〈 section-list〉) ;
〈mapping-properties〉 : 〈attributes〉 }

〈section-list〉 ::= section-id+ 〈section-list〉 | section-id

〈mapping-properties〉 ::= load-addr-const: start-addr-const:
align-const

〈attributes〉 ::= (constant, constant, constant) :
length-const〈unit〉

〈unit〉 ::= b | Kb |Mb| Gb | empty

Essentially, a segment consists of a list of sections, map-
ping properties (load address, start address and alignment)
and attributes describing the nature of the segment (whether
it is allocatable, read-only or executable) and its maximum
length.

Figure 3 shows an illustrative example, whererom and
ram segments are described within our i8051 model. Note
that the segmentrom consists of sectionsCSEG, GSINIT0 ,
GSINIT1 andGSFINAL (line 2), while the segmentram con-
sists of sectionsDATAandSTACK(line 7). In therom segment,
line 3 specifies the location where it is loaded (0x0000),
states the value effectively used in the relocation process(in
this case also0x0000) and defines byte alignment (value1).
Then, it specifies the segmentrom as not allocatable (value

0), read-only (value1) and executable (value1). In the end,
line 3 defines the maximum segment length (64Kb).

1. segment rom {
2. (CSEG + GSINIT0 + GSINIT1 + GSFINAL);
3. 0x0000 : 0x0000 : 1 : (0, 1, 1) : 64Kb
4. }
5.
6. segment ram {
7. (DATA + STACK);
8. 0x0008 : 0x0008 : 1 : (1, 0, 0) : 128b
9. }

Figure 3. Fragment of a i8051 memory layout

4 Retargeting of binary utilities

This section proposes a binary utility retargeting tech-
nique based upon the abstract model described in Section 3.
We first describe our novel relocation handling mechanism
and then we show how binary utilities are generated from
our abstract model. The implementation infrastructure re-
lies on the popular GNU Binutils package whose machine-
dependent modules are automatically modified by our tech-
nique, while machine-independent ones are reused.

4.1 A new relocation handling mechanism

Given an instruction, its relocation information (if any)
is stored within a tuple calledrelocation action, as follows:

reloc-action = (uid, format-id, field-id, modifier)

Algorithm 1 shows how areloc-action is automatically
generated from our ISA model for each instruction requir-
ing relocation. Since Algorithm 1 makes our abstract model
simpler, it keeps the user from handling low-level relocation
details, as opposed to the approach in [1].

Algorithm 1 Automatic generation of relocation actions
1: uid← 1

2: fid← 1

3: for each instructiondo
4: for eachoper-type-iddo
5: if oper-type-idis ‘addr’ or ‘exp’ then
6: let ra = (uid, fid, field-id, modifier-id) be a newreloc-id
7: uid← uid+1

8: end if
9: end for

10: fid← fid+1

11: end for

Algorithm 2 defines a routineapply-reloc that performs
relocation at linking time. The routineencode-insn , which
patches the instruction under relocation, is described in Sec-
tion 4.3.2.

Algorithm 2 Relocation handling mechanism
Routine: apply-reloc (rid, value, addend, addr)

1: let ra = (uid, format-id, field-id, modifier-id) be areloc-actionsuch thatuid = rid
2: let insnbe the instruction at addressaddr
3: let f be the function tied tomodifier-id
4: calc← f (value, addend, addr)
5: new-insn← encode-insn (format-id, field-id, insn, calc)
6: storenew-insnat addressaddr

3

As it will be discussed in Section 4.4, conventional
approaches cannot easily handle ISAs admitting multi-
ple choice for operand encoding (such as ARM’s data-
processing immediate operands). Since our mechanism em-
ploys the notion of modifier (whose code can be written
as an arbitrary C function), virtually any calculation could
be performed during relocation. Therefore, the proposed
mechanism can handle those ISAs.

4.2 GNU Binutils overview

The GNU Binutils package [12] is a collection of tools
aimed at binary file manipulation. Its main tools are an as-
sembler (gas) and a link editor (ld). In addition, the pack-
age contains library managers (ar and ranlib), object file
inspectors (objdump and readelf) and some other minor
tools.

In general, a GNU Binutils tool has a machine-
independent module (the core), which provides the main
tool operation and control flow, and a machine-dependent
module, which implements CPU-specific operations. Most
of the retargeting effort is spent on the package’s main li-
braries, namelyOpcodesandBinary File Descriptor(BFD).
In order to retarget a tool to a new CPU, the machine-
dependent code must be implemented and the package’s
main libraries extended.

The Opcodes library encapsulates the target ISA. Al-
though an API is defined for decoding purposes, there is no
standard on how encoding routines and data structures are
represented. Therefore, it is up to the developer to choose a
convenient format for each new CPU to be ported.

The BFD library provides a set of generic routines to op-
erate on object files regardless of the adopted binary format.
Application programs interface with the library’s front-end,
which provides a set of format-independent routines to ma-
nipulate object files. The front-end is responsible for calling
the proper back-end routine which in turn executes format-
dependent operations on the object file. The main advan-
tage of the framework provided by the BFD library is that,
once an object file format is implemented in the backend, it
can be reused by all CPU ports. Therefore, although CPU-
specific information (such as relocation) is still required, the
overall porting effort is substantially reduced.

4.3 Automatic Opcodes retargeting

Since our approach deliberately hides detailed informa-
tion from the user, the information originally captured by
our abstract model must be kept in such a way that it can fit
the adopted implementation infrastructure. Since the Op-
codes library does not specify any standard way to keep the
information properly, we have created a generic framework
consisting of a so-calledinstruction tableand anencoding
routine. This framework, which is automatically generated,
bridges the gap between the abstract model and the binary
utility tools.

4.3.1 Instruction table
The instruction table is a compact low-level description of
the instructions declared in the abstract model, which is spe-
cially tailored for binary utility use. Each table entry is a
tuple defined as:

table-entry = (mnemonic, opinfo, image, mask, format-id)

Let’s illustrate its interpretation by means of an example.
The fragment model in Figure 2 results in the following ta-
ble entry:

{"cjne", "%reg:1:0:,#%imm:2:0:,%addrR3:3:5:",
0xB80000, 0xF80000, 1}

The first element is the instruction mnemonic (cjne).
The second element stores operand information such as
types, instruction fields and relocation identifiers. For in-
stance, the first operand, whose type isreg , is bound to field
identifier 1 and has relocation identifier0 (meaning none).
The third element stores the instruction partial binary image
(0xB80000). The fourth element stores a mask (0xF80000)
used by the disassembly algorithm for instruction identifi-
cation. The last element stores the format identifier (1, in
this case).

4.3.2 Encoding and Decoding routines
Recall that Algorithm 2 invokes the patching routine
encode-insn(format-id, field-id, img, value) to re-
locate an instruction. Given the format type (format-id)
and its binary image (img), it edits a given instruction field
(field-id) by replacing its contents withvalue and return-
ing the resulting instruction.

Encoding routines are automatically generated from the
instruction formats specified in the abstract model. The
encoding routine consists of two nested switch-case con-
structs. The outer construct selects the format, while the
inner construct selects the field to encode.

A decoding routine is also generated as part of the Op-
codes API. Upon receiving a base address, the decoding
routine first figures out the correct instruction size and de-
codes its binary image based on themask andimage fields of
a table-entry . Once the instruction has been identified, its
string representation is built up through themnemonic and
opinfo fields.

4.4 Automatic BFD retargeting
One of the most difficult aspects in porting the BFD li-

brary to a new CPU is certainly its relocation mechanism.
Quoting the BFD internal documentation [15]:“Clearly the
current BFD relocation support is in bad shape”.

BFD’s relocation handling mechanism is based on a re-
location table structure, namedhowto , which stores relo-
cation attributes such as the instruction size, the shift val-
ues to guide the relocation process and whether the instruc-
tion is PC-relative or not. A generic function in the li-
brary uses the table properties to actually apply the relo-
cation at linking time. Thehowto structure imposes severe
restrictions on some of its fields. For instance, 24-bit in-
structions cannot be specified (as required by the i8051).

4

Besides, its table-driven nature overly constraints the cal-
culation expressiveness required to perform relocation for
ISAs with complex encoding schemes, where operands may
admit multiple encoding alternatives (such as the so-called
data-processing immediate operands in the ARM CPU). To
work around such limitations, BFD requires the writing of
machine-dependent code, an expedient that hampers auto-
matic retargeting.

The model described in [1] uses the same table-oriented
approach. It overcomes some of the Binutils difficulties by
providing an additional field to describe the relocation cal-
culation expression. Although this improves the relocation
handling, it is still unable to generically address the above-
mentioned complex encoding schemes. Besides, it is up to
the user to specify the relocation parameters, as opposed to
our approach, where the automatic generation of relocation
actions (Algorithm 1) raises the abstraction level seen by
the user.

To automatically retarget the BFD library, instead of re-
using thehowto structure, our approach relies on therelo-
cation actionsdescribed in Section 4.1. The virtually un-
constrained expressiveness captured by its modifiers grants
our approach with a generic relocation mechanism. It is
able, for instance, to handle multiple operand encoding al-
ternatives. At linking time, Algorithm 2 successfully usesa
relocation action to patch binary code via modifiers and an
encoding routine.

4.5 Automatic tools retargeting

To retarget the assembler, a series of machine-dependent
routines must be implemented. These routines deal mainly
with instruction parsing, instruction encoding and, if nec-
essary, relocation generation. We have developed a single
parsing routine that handles all target CPUs. The parsing of
an assembly source file is guided by the information stored
in the Opcodes library. Once an instruction is syntactically
validated, binary code is emitted and a relocation entry is
created for each relocatable operand (according to its type)
using the BFD library.

Most of the linker code is machine-independent since it
relies on the BFD library and the so-called linker command
language [12]. For each relocation found in the relocatable
object code, the linker calls theapply-reloc routine, spec-
ified in Algorithm 2. The layout of the resulting executable
object file is controlled by our memory model, defined in
Section 3.2.

Retargeting the disassembler (objdump tool) is just a
matter of retargeting the decoding API of the Opcodes li-
brary. For each memory address whose instruction must
be disassembled, the decoding routine (briefly described in
Section 4.3.2) returns the corresponding instruction string.

5 Experimental Results
To verify our retargeting techniques, we first adopted the

ArchC ADL [2]. Then, we wrote ArchC models for targets
MIPS, SPARC, PowerPC and i8051. Finally, each ADL

model was automatically translated into an abstract model,
according to the syntax rules described in Section 3.

The GNU Binutils package supplies assemblers, link-
ers and disassemblers for several target CPUs. Let’s call
them conventional tools. We employ conventional tools
to produce executable code, which has served as a refer-
ence during validation (since there is no i8051 reference
tool in GNU Binutils, we have used SDCC [14] instead).
From each generated abstract model, our retargeting tool,
henceforth calledbingen , automatically retargets the con-
ventional assembler, linker and disassembler (objdump) for
the mentioned target architectures. The files produced by
bingen are then inserted into the Binutils source tree, where
the binary tools are built up like any other tools within that
package. The automatically retargeted tools are henceforth
calledgenerated tools.

In order to validate the generated tools, two different pro-
cedures were employed. On the one hand, to validate the
tools producing object code (assembler and linker), we per-
formed the following procedure: given a target CPU and a
benchmark program in assembly form, conventional tools
were used to produce the reference code. Then, the code
produced by the generated tools was compared to the ref-
erence code, allowing us to check its correctness. On the
other hand, to validate the disassembler, we employed the
following procedure: given a benchmark program, its as-
sembly code was used as input to the assembler and linker
resulting in executable code. Then, the executable code was
fed to the disassembler. Finally, the resulting disassembler
output was compared to the assembler input to check for
matching.

In order to validate thebingen tool itself, we had to
check for proper automatic retargetability. Therefore, the
procedures described in last paragraph were repeated for
MIPS, SPARC, PowerPC and i8051 targets. For the ex-
periments, we adopted two well-known benchmark suites,
MiBench [4] and Dalton [16].

5.1 Validation flow
Figure 4 shows the validation flow for the generated as-

sembler and linker. Given a program consisting ofn C

source files, the cross compiler GNUgcc producesn as-
sembly source files. These files pass through a filter which
normalizes the section names of the assembly sources, giv-
ing rise to a set ofn filtered assembly source files. Then the
flow forks: one path uses the conventional tools; the other
path uses the generated tools. In each path, the assembled
object files are then linked, resulting in two executable files,
one serving as reference, and another being the file under
validation. In the end, they are compared to check if they
match.

5.2 Result analysis
The validation flow shown in Figure 4 was repeated for

each benchmark program and for each target CPU, giving
rise to the results summarized in Table 1. For compact-
ness, results are computed by adding up the figures result-

5

No

Source Files

(C)
 GCC

Source Files

(assembly)

Filter
Source Files

(assembly)

Generated

assembler

Object Files

Conventional

assembler

Object Files

Generated

link editor

Conventional

link editor

Executable file

under validation

Reference

executable file
=

Yes

n
 n

n

n
n

n
 n

n

n

1

1

1

1

n

Figure 4. Tool generator validation flow

ing from each individual program. The first row identifies
the adopted benchmarks, while the second row shows how
many programs were used. The third row shows the overall
number of source files handled by our tool. Rows four and
five display, respectively, the number of relocations gener-
ated and the number of relocations actually performed. The
last two rows show the added-up sizes (expressed in bytes)
for the code and data sections of the generated binary files.
We have grouped the instruction sections under the.text

segment and the data sections under the.data one. Results
do not include run-time library code (except for the i8051).

Table 1. A summary of experimental results
MIPS SPARC PowerPC i8051

benchmark MiBench MiBench MiBench Dalton
programs 19 19 19 9
files 109 109 109 18
relocs (gen) 7 8 12 12
relocs (perf) 17895 15951 14926 480
.text size 451600 398988 369000 3327
.data size 467840 470368 466868 107

We also observed that, for both conventional and gener-
ated tools, the resulting number of relocation types is the
same. This shows the effectiveness of our relocation han-
dling mechanism.

The fact of getting correct results for four distinct tar-
get CPUs and for such a diversity of real programs (with a
huge variation on the number of relocations, number of files
and code size) is a strong evidence of the robustness of the
generated binary utilities.

6 Conclusions and Future Work
This paper has shown a general and pragmatic approach

for binary utility generation. Generality results from an
abstract description of the target CPU and from the tool
structure breakdown in machine-dependent (generated) and

machine-independent (invariant) modules. Implementation
pragmatism results from the adoption of a well-accepted bi-
nary utility package.

Experimental results have provided strong evidences of
correction (by comparing results produced by both gener-
ated and conventional tools), robustness (by observing re-
sults for a varied set of benchmark programs) and retar-
getability (by testing for distinct RISC and CISC targets).

On the one hand, our new relocation handling mecha-
nism grants our approach with the generality required to
face the broad spectrum of ISAs in the embedded system
arena. On the other hand, its underlying abstract model,
was designed to keep our tools from being tied to a specific
ADL.

As future work, we plan to extend the range of gener-
ated binary utilities. For instance, an implementation is in
progress for the generation of debuggers. To further probe
our abstract model, we intend to make use of other ADLs.

References
[1] M. Abbaspour and J. Zhu. Retargetable binary utilities.In Proc. of

39th DAC, pages 331–336, June 2002.
[2] R. Azevedo and S. Rigo and M. Bartholomeu and G. Araújo and

C. Araújo and E. Barros The ArchC Architecture Description Lan-
guage. InIJPP, 53(5):453–484, October 2005.

[3] R. A. Bergamaschi and J. Cohn. The A to Z of SoCs. InProc. of
ICCAD, pages 790–798, November 2002.

[4] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.Mudge,
and R. B. Brown. MiBench: A free, commercially representative
embedded benchmark suite. InWWC-4, pages 3–14, December
2001.

[5] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An instruction
set description language for retargetability. InProc. of 34th DAC,
pages 299–302, June 1997.

[6] M. R. Hartoog, J. A. Rowson, P. D. Reddy, S. Desai, D. D. Dunlop,
E. A. Harcourt, and N. Khullar. Generation of software toolsfrom
processor descriptions for hardware/software codesign. In Proc. of
34th DAC, pages 303–306, June 1997.

[7] A. Hoffmann, A. Nohl, G. Braun, and H. Meyr. A survey on mod-
eling issues using the machine description language LISA. InProc.
ICASSP’01, volume 2, pages 1137–1140, May 2001.

[8] P. Mishra and N. Dutt. Architecture description languages for pro-
grammable embedded systems.IEE Proceedings – Computers and
Digital Techniques, 152(3):285–297, May 2005.

[9] R. Moona. Processor models for retargetable tools. InProc. of 11th
IWRSP, pages 34–39, June 2000.

[10] N. Ramsey and M. F. Fernandez. The New Jersey machine-code
toolkit. In Proc. of the USENIX Technical Conference, pages 289–
302, January 1995.

[11] N. Ramsey and M. F. Fernandez. Specifying representations of ma-
chine instructions.ACM Trans. Program. Lang. Syst., 19(3):492–
524, May 1997.

[12] R. H. Pesch and J. M. Osier.The GNU Binary Utilities. Free Soft-
ware Foundation Inc, May 1993.

[13] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design
and software design methodology for embedded systems.IEEE
Design & Test of Computers, 18(6):23–33, November–December
2001.

[14] Small Device C Compiler.http://sdcc.sourceforge.net (Au-
gust 2006).

[15] I. L. Taylor. BFD Internals. Free Software Foundation

[16] The UCR Dalton project. http://www.cs.ucr.edu/˜dalton

(August 2006).

6

