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Abstract

Dynamic binary translators are programs that
translate binary programs from one machine to an-
other. The translation is done on the fly, so per-
formance is a major issue in this kind of system.
Identifying and optimizing hot traces is a way to
achieve more performance, and also to compensate
for the translation overhead. Aggressive optimiza-
tions need precise data/control-flow information
about the code, otherwise they will be conservative
and less effective. In this paper, we measure the
amount of additional data-flow information one can
obtain by going beyond hot trace boundaries into
non-frequently executed (cold) code. We show that
in some cases, as in liveness analysis, one can con-
siderably improve the information available, thus
creating more opportunities for trace optimization.
Moreover, the amount of additional data-flow in-
formation decreases very fast as one departs from
trace boundaries, limiting the overhead imposed by
the cold code analysis.

1 Introduction

Dynamic binary translators (DBTs) are programs
designed to execute in a host machine binaries from
other machines, performing the translation on the
fly. Alternatively, DBTs may be used to improve
performance of binaries from the same architecture
[4].

DBTs translate each instruction to be executed
into a equivalent instruction in the host machine.
Some DBTs have a codecache to store the trans-
lated instructions and to execute these instructions.
The codecache optimization saves time, as it avoids
the overhead of translating instructions repeatedly
[4].
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For optimization purpose DBTs can instrument
the translated code so as to identify highly executed
regions in the program and select them for analy-
sis. Once optimized, these regions can improve the
program runtime and hopefully hide the translation
overhead.

Dynamic optimizations may include well-known
optimizations like dead code elimination, copy
propagation, CSE [2] and others that are more spe-
cific to the translation environment. Register al-
location in particular, is an optimization that de-
mands much more effort, particularly if the host
and guest machines have very different register sets
and sizes.

Like in off-line optimizers, on-the-fly optimizers
need information about the code, which could be
particularly hard to obtain in a dynamic environ-
ment. Dynamic environments create some new
challenges and constraints to the optimizer. For
example, it is not possible to construct the control
flow graph (CFG) of the program, only program ex-
ecution traces are available. Moreover, structures
like variables and basic blocks are hidden behind
the assembly code.

Off-line optimizers can spend a lot of time gath-
ering information about the code and optimizing it,
but dynamic optimizers need to be as fast as pos-
sible. The time spent optimizing the traces must
pay itself in performance increase or the optimiza-
tion will be useless. But even the fastest optimizer
needs some kind of information about the code to
do its job.

2 Trace Optimization

Traces are sequences of instructions, including
branches but not including loops, that are executed
for some input data [15]. If some trace is executed
more times than a specified threshold we call it a
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hot trace. DBT’s hot traces are important for op-
timizations because their high execution frequency
considerably improves optimizations’ effectiveness,
thus improving the overall program execution time.

(01) shl esi, cl

(02) add edx, ebx

(03) or eax, esi

(04) movzx eax, ax

(05) mov DWORD PTR [esp+01ch], eax

(06) mov ebx, DWORD PTR [edi*4+080cd380h]

(07) test ebx, ebx

(08) jnz ...

(09) mov eax, DWORD PTR [esp+024h]

(10) movzx ebp, WORD PTR [eax*2+0810dae0h]

(11) add eax, 0x1h

(12) mov DWORD PTR [esp+024h], eax

(13) cmp ebp, 0x100h

(14) jb ...

(15) mov eax, ebp

(16) shr eax, 0x7h

(17) movzx edi, BYTE PTR [eax+080d4560h]

(18) mov ebx, DWORD PTR [esp+020h]

(19) movzx ebx, WORD PTR [ebx+edi*4+02h]

(20) mov eax, ebx

(21) neg eax

(22) add eax, 0x10h

(23) cmp edx, eax

(24) jg ...

(25) mov eax, DWORD PTR [esp+01ch]

(26) movzx esi, WORD PTR [ebx+edi*4]

(27) jmp ...

Figure 1: Trace

Figure 1 shows a trace from the SPEC CPU 2000
[1] program 164.gzip in x86 assembly. Since this is a
hot trace, we expect that the executing flow enters
into the first instruction shl esi,cl and leaves out
of the last instruction jmp ... most of the time.
The execution flow may leave the trace in one of the
3 branch instructions in the middle of the trace,
but this behavior is expected to occur few times.
We call these branches of side exits because they
break the continuous execution flow of the trace.

Assuming that this trace will execute most of
the time without taking a side exit, we can focus
the optimizations on this assumption. If we do not
care about memory and register aliasing, a simple
optimization that can be performed on the exam-

ple trace is to remove a memory access. The 5th

instruction of the trace stores eax to esp+01c and
the 25th instruction on this trace reads this mem-
ory position. If we find an empty register covering
these two instructions, we can copy the store value
into the 5th instruction to this register and replace
the memory access at the 25th instruction for a ref-
erence to a register. In fact, we notice that register
esi is used at the 3rd instruction and defined at
the 26th instruction. From the 5th to the 25th in-
struction there is no definition or use of esi, but
we can not ensure that register esi is dead along
these instructions.

There are 3 side exists between the instructions
under analysis. The value of esi may be alive out-
side the trace on one of the side exits. If this is true,
then the proposed optimization is not possible.

The common liveness analysis on this trace is not
enough to solve this issue. For conservative reasons
we must assume that all registers are alive on the
side exists and at the end of the trace. This as-
sumption turns the proposed optimization impos-
sible.

3 Cold Code Analysis

Situations like the presented in Figure 1 restrict
the aggressiveness of trace optimizations, allowing
optimizations only inside basic blocks. If we al-
ways assume, for every optimization, the conserva-
tive way in every optimization, we will miss many
optimization opportunities.

The proposed optimization to remove the mem-
ory access can not be performed under conserva-
tive estimation of registers’ liveness. But if we in-
spect some instructions outside the trace, we can
increase our information about the register liveness
and maybe discover that esi is dead on all side
exists, thus allowing us to do the optimization.

We call the code outside a trace cold code, be-
cause it is not supposed to execute as many times
as traces, so is not profitable to optimize it. But
on the other hand it has information that may be
useful to the hot traces, like register and flags us-
age.

The analysis of cold code consists in performing
the required data flow analysis on this piece of cold
and gather the required information to increase the
data flow analysis precision in the hot trace. Since
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DBTs do not generate a full CFG, some heuristics
must be employed to walk on the cold code.

Diving into cold code (or walk into cold code)
has its own issues involved. How deep must we dive
into cold code and how much time spent on it? We
have no guaranties that this extra time spent on
increasing data flow information will allow us to
perform further optimization.

4 Diving into Cold Code

Figure 2 shows the initial configuration for a trace.
This trace has 4 basic blocks and 3 side exits. This
can be called level 0 cold code diving, that is, no
cold code analysis. If we think about liveness anal-
ysis, we must assume that all registers are live at
each side exit.

Figure 3 corresponds to dive one basic block into
cold code (level 1). At this level only one basic
block into cold code is analyzed. The end of the
block is limited by a branch instruction, a function
call instruction, a ret instruction or a jump to a non
translated address. When we find one of these in-
structions, we assume that the registers that could
not be solved are alive after this point.

If we decide to dive one more level (level 2),
we must analyze the successors of basic blocks in
level 1, when possible, as shown in Figure 4, where
we can see that each basic block in level 1 has its
successors added to the analysis.

BB3

Side Exit

Side Exit

Side Exit

BB1

BB2

BB4

Figure 2: Trace for Optimization

We can expand the diving process to reach
deeper levels, but it might not always be possible
do dive so deep. Figure 5 shows a possible scenario.
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Figure 3: Diving one level into cold code
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Figure 4: Diving two levels into cold code
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Figure 5: Diving three levels into cold code
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If we reach a jump instruction that does not allow
us to determine to target address, it is not possible
to keep going with the analysis. The same happens
with ret instructions, without looking at the stack.
This put an extra cost to the cold code analysis.

In Figure 5 we can see that sometimes a deeper
level can take us to a basic block at shallow levels.
If we keep track of the information at each level
entrance, we don’t need to dive again, otherwise,
we will be analyzing the same code again.

The blocks on the side exit of BB1 go from level
2 to level 1 when trying to reach level 3. Sometimes
they can reach the middle of a trace.

5 Experimental Results

Our experimental results are focused in the opti-
mization proposed in the beginning of this paper,
i.e. in finding available registers (dead registers)
that can be used to replace memory accesses on a
trace.

We implemented this technique into our DBT
translating system, which performs code transfor-
mation from IA32 to IA32. Our DBT [6] runs on
Linux and has its structure shown in Figure 6. It
has a kernel module which is loaded and replaces
the system call execve. Every time that a pro-
gram executes, the module checks for a shared li-
brary in the same directory of the application, if
this library is not found, then the original Linux
execve is called. If the shared library is found, then
it is loaded and starts the execution. This shared
library is our DBT itself, which loads the applica-
tion code and starts the translation process.

Our DBT has 3 main modules: front-end, run-
time and back-end. The front-end module trans-
lates the application instructions and stores them
into a code cache, controlling the program execu-
tion in this cache. The runtime module performs
the communication between the DBT and OS, and
between the application and the OS. To achieve
that, it provides I/O interfaces, system calls, and
support to system signals, dynamic shared objects
loads and self-modifying code. The front-end and
the runtime interact to handle system related fea-
tures. The front-end is also responsible to select hot
traces for runtime optimization by the back-end.
The back-end module is responsible for trace opti-
mization. It is able to dump hot-traces into files,

so as to perform off-line optimization and profiling
analysis.

Application Binary Code

Runtime FrontEnd

BackEnd

OS

Code
Cache

DBT

Control Flow Data Flow

Figure 6: Our Dynamic Binary Translator Struc-
ture

5.1 Experiments

Our experiments used the SPEC CPU 2000 [1]
benchmark. Programs were compiled with the Intel
Compiler using the peak tuning and ref input. For
each program the DBT identified hot traces, using
MRET heuristics [4], and dove into cold code look-
ing for available registers. The register set of x86
architecture creates some alias relationship among
the registers. For example, a definition of register
EAX also defines registers AX, AH and AL. A use of
register BH implies in a use of register EBX. To han-
dle these issues, we treat the registers as resources,
and thus EAX, AX as well as the other registers are
considered different resources.

In our experiments we analyze the set of registers
presented in Table 1.

We analyzed every side exit of each trace con-
structed by our DBT. The set of experiments was
performed using 8 dive levels. For the first run of
SPEC, cold code analysis was done using just one
dive level, a second run used two dive levels and so
on, until we reach 8 dive levels. As shown in Table
1, at each side exit we are trying to determine the
availability of 48 registers. The set of traces gener-
ated by our DBT produced a total of 240,612 side
exits, so the maximum number of available registers
is 11,549,376 registers.

In our implementation a basic block can be ana-
lyzed more than once because we do not keep track
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Figure 7: Registers available per Level

Figure 8: Registers available per Level per Program

Figure 9: Increase of information accuracy

of the information collected at each block.

Figure 7 and Table 2 summarize the results that
we found at each level. Diving 8 levels allowed us to
discover that 22.52% of the registers are available
(dead), that is, almost 1/4 of the whole register
set. For an architecture with few registers, this
could become an important resource which could
be explored by a dynamic register allocator. Notice

that we are discussing dead registers. If we try to
determine unused live range intervals existing in
live registers, this value could become larger than
22.52%.

By going beyond trace boundaries, cold code
analysis can determine the live/dead status for al-
most all registers on a side exit, thus allowing the
optimizer to make better choices of what to op-
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Figure 10: Cold Code Analysis Overhead

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8
164.GZIP 0.11% 0.32% 0.75% 1.39% 2.48% 4.38% 7.63% 13.01%
175.VPR 0.17% 0.41% 0.86% 1.47% 2.34% 3.93% 6.42% 10.28%
176.GCC 0.49% 1.10% 2.31% 4.06% 6.91% 11.46% 17.96% 28.42%
181.MCF 0.09% 0.12% 0.27% 0.50% 1.00% 1.73% 3.23% 5.77%
186.CRAFTY 0.20% 0.41% 0.95% 1.88% 3.54% 6.33% 12.40% 21.62%
197.PARSER 0.40% 0.42% 0.83% 1.45% 2.57% 4.44% 7.45% 12.23%
252.EON 0.23% 0.58% 0.97% 1.59% 2.68% 4.30% 7.08% 11.51%
253.PERLBMK 0.34% 0.73% 1.43% 2.43% 3.94% 6.28% 9.76% 14.96%
254.GAP 0.17% 0.48% 0.93% 1.61% 2.66% 4.55% 7.27% 11.90%
255.VORTEX 0.51% 1.21% 2.17% 3.36% 4.69% 6.95% 9.70% 13.51%
256.BZIP2 0.14% 0.26% 0.61% 1.11% 2.02% 3.72% 6.58% 11.21%
300.TWOLF 0.11% 0.22% 0.47% 0.94% 1.78% 3.28% 5.97% 10.69%
168.WUPWISE 0.21% 0.76% 1.66% 3.05% 6.94% 13.00% 23.07% 37.59%
171.SWIM 0.01% 0.06% 0.14% 0.19% 0.47% 0.93% 1.67% 3.03%
172.MGRID 0.05% 0.16% 0.34% 0.69% 1.25% 2.40% 4.45% 8.05%
173.APPLU 0.13% 0.32% 0.69% 1.41% 2.84% 5.28% 9.57% 16.70%
177.MESA 0.05% 0.17% 0.24% 0.51% 1.07% 1.74% 2.91% 4.85%
178.GALGEL 0.29% 0.78% 1.58% 3.81% 7.15% 13.03% 22.76% 32.45%
179.ART 0.08% 0.16% 0.45% 0.92% 1.69% 3.19% 6.00% 11.23%
183.EQUAKE 0.07% 0.16% 0.44% 0.71% 1.26% 2.15% 3.65% 6.26%
187.FACEREC 0.04% 0.21% 0.42% 0.83% 1.48% 2.74% 4.86% 8.88%
188.AMMP 0.05% 0.10% 0.20% 0.36% 0.65% 1.22% 2.17% 3.88%
189.LUCAS 0.06% 0.19% 0.37% 0.83% 1.50% 3.09% 5.47% 10.27%
191.FMA3D 0.08% 0.19% 0.39% 0.67% 1.07% 1.73% 2.78% 4.47%
200.SIXTRACK 0.10% 0.23% 0.55% 1.01% 1.76% 3.16% 5.42% 9.33%
301.APSI 0.10% 0.24% 0.50% 0.94% 1.80% 3.18% 5.51% 9.57%

Table 4: Cold Code Analysis Overhead
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Registers in x86 Architecture
EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL

EBP BP
ESI SI
EDI DI
ESP SP

MM0 MM1 MM2 MM3 MM4 MM5 MM6 MM7
XMM0 XMM1 XMM2 XMM3 XMM4 XMM5

XMM6 XMM7 XMM8 XMM9 XMM10 XMM11
XMM12 XMM13 XMM14 XMM15

Table 1: x86 registers

Available Registers
Level 1 975,767
Level 2 1,650,727
Level 3 2,062,975
Level 4 2,296,119
Level 5 2,431,091
Level 6 2,511,738
Level 7 2,563,247
Level 8 2,601,352

Table 2: Available registers per level

Precision Increase
Level 1 −
Level 2 69.17%
Level 3 24.97%
Level 4 11.30%
Level 5 5.88%
Level 6 3.32%
Level 7 2.05%
Level 8 1.49%

Table 3: Precision increase per level

timize or not. Notice that the registers that are
considered available, are those that we can ensure
that were assigned a value on the side exit. If a
register never is used in a program, so this register
will be considered as not available, because we will
never find a instruction defining it.

Figure 9 and Table 3 give us an idea on how deep
the analysis should dive. The percentage numbers
are related to the previous level. From level 1 to
level 2 the precision increase in the number of avail-
able registers was 69.17%, while from level 2 to level
3 the precision increase was 24.97%. This dimin-
ishing return behavior continues until we reach the
last level (level 8). As shown, after level 4 or 5
the increase in the number of available registers is
not large, meaning that for most of the purposes,
diving until level 4 or 5 is enough to determine the
dead/live status of most registers.

Table 4 and Figure 10 show the time execution
overhead caused by our cold code analysis. The
overhead corresponds to the amount of time spent
by the analysis, with respect to the whole program
execution time. As shown, until level 3 the over-
head is below 1%, in 21 out of the 26 programs
available. As expected, Figure 10 shows that the
cost is exponential, and thus the overhead for the
final levels is very high. This probably happens
because some basic block may be analyzed several
times, as for example, in the case of a loop. An
implementation which considers code re-analysis
could certainly decrease this overhead.

6 Conclusion

In this paper we examined a way of increasing data
flow information available on traces constructed by
DBTs. The process consists in analyzing cold code,
beyond program hot traces, to obtain the desired
information. As far as we know, no DBT employs
this technique to analyse code outside traces.

We implemented a data flow analysis to deter-
mine the set of available registers at each side exit
of a trace. To increase the precision of the data
flow information, we performed cold code analysis,
running the benchmark several times and analyzing
a large amount of cold code at each run.

The tests were performed using the whole SPEC
CPU 2000 benchmark and the results allowed us
to conclude that almost 1/4 of the x86 architecture
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registers are dead on trace exits. Moreover, the
results also showed that there is no need to go far
into cold code in order to achieve this information:
a level 4/5 dive is enough.

Regarding the example presented in Figure 1, we
were able to determine that register esi was dead
on the side exits at instructions 8, 14, 24 enabling
us to perform the optimization.

For the future we plan to change our code analy-
sis technique so as to avoid the overhead of repeat-
ing basic block analysis. We also intend to test it
in other types of data flow analysis, like for exam-
ple register flag detection, which is a very relevant
information in other code optimizations.
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