
Des Autom Embed Syst (2006) 10:253–283

DOI 10.1007/s10617-006-0654-9

Platform designer: An approach for modeling
multiprocessor platforms based on SystemC

Cristiano Araujo · Millena Gomes · Edna Barros ·
Sandro Rigo · Rodolfo Azevedo · Guido Araujo

C© Springer Science + Business Media, LLC 2006

Abstract This paper[3.5pc] presents the Platform Designer (PD) framework, a set of Sys-

temC based tools that provide support for modeling, simulation and analysis of multipro-

cessor SoC platforms (MPSoC), at different abstraction levels. PD provides mechanisms for

interconnection specification, process synchronization and communication, thus allowing the

modeling of a complete platform, in a unified environment. To do that it uses an extension

of the ArchC ADL and acsys, a tool that enables the automatic generation of a SystemC

simulator of the platform. The main advantages of this approach are twofold. First, designers

have more flexibility since they can integrate and configure different processors to the plat-

form, using a single environment. Second, it enables a faster design space exploration, given

that it automatically generates SystemC simulators of whole platforms at distinct abstraction

levels. A number of platform variations can be tried out with minor design changes, thus

reducing design time. Experimental results show the suitability of the platform simulator for

design space exploration. Real applications (with medium complexity) run in the platform

in few minutes. Combined with the facility to generate platforms with minor changes, this

feature allows an improvement of the design space exploration.

Keywords Platforms . SystemC platform descriptions . Architecture description

languages . Platform simulation . Communication and synchronization architecture

1 Introduction

Typical embedded systems are traditionally designed to run a single embedded applica-

tion under stringent resource constraints. Shared memory multiprocessor SoCs (MPSoCs)

C. Araujo (�) . M. Gomes . E. Barros

Informatics Center (CIn), Federal University of Pernambuco,

Cidade Universitaria 50740-540, Recife PE, Brazil

S. Rigo . R. Azevedo . G. Araujo

Institute of Computing, University of Campinas,

Cidade Universitaria Zeferino Vaz, PO. Box 6176, Campinas-SP, Brazil

Springer



254 C. Araujo et al.

have been widely used in today high-performance embedded systems, such as network and

multimedia processors. They combine the high-performance of multiprocessor parallelism

with the level of integration provided by systems-on-chip technology [31].

MPSoC performance is not only determined by the capacity of the node processors (e.g.

CPU speed, cache size, etc.), but the network that interconnects processors and memories also

limit it. The design and optimization of such networks are critical for MPSoC performance.

On the other hand, tools for modeling and analyzing such systems, at an early design phase,

are mandatory in order to reduce the design time and time-to-market.

To support the design space exploration, at an early design phase, the application should

be mapped onto a multiprocessor platform model, which should support an analysis of the

functional and non-functional requirements of the application.

Simulation is the most used technique for the analysis of functional and non-functional

requirements of multiprocessor platforms (MPSoCs) [12, 24, 25, 30]. It is used to verify

the correct behavior of the embedded application, which is distributed on the processors,

and the impact of the interconnection structure on the communication cost. In the later,

simulation should provide mechanisms to detect the occurrence of performance penalties

and communication hazards, like task starvation.

The simulation of multiprocessor platforms is not a trivial task. Instruction Set Simulators

(ISSs) for the processors must be integrated in order to simulate the programs running on

each processor. It is also necessary to synchronize these simulators in accordance with the

communication protocols implemented by the underlying interconnection structure of the

system. Validation of these components is critical as they define most of the functional and

non-functional requirements of the system. Traditional approaches use encapsulation of third

party ISSs as components of the system [8, 10, 24]. One problem that arises from component-

based approaches is that the design space is normally constrained. In most cases, a small set

of processors is available, while in others, just a family of processors. This is critical when

the processors at disposal do not meet the design requirements.

This paper presents a processor centric approach for modeling and simulation of MPSoCs.

It leverages on the ArchC architecture description language, which has been extended in order

to provide a suitable mechanism for modeling multiprocessor platforms at a high abstraction

level. Platforms are modeled as an extension of processor constructs, creating a smooth

hierarchical view of the whole design. Together with the language extension, a tool has been

developed that takes the platform description and generates SystemC executable simulation

models of the platform, at different abstraction levels: functional and cycle accurate. Besides

platform modeling, the proposed methodology also includes a mechanism for implementing

process synchronization and communication in the target platform.

The benefits from this approach are the increase in productivity and a more efficient

design space exploration. The first benefit comes from the automatic generation of simu-

lation models, while the second one is due to the availability of a common environment

for specifying processors, devices, and interconnection mechanisms using the same design

language.

The rest of the paper is structured as follows. Section 2 describes related works. Multipro-

cessor platform modeling and simulation are discussed in Section 3. The ArchC language is

shortly introduced in Section 4. The proposed approach for platform modeling is described

in Section 5, whereas the technique for implementing process synchronization and commu-

nication, in the target platform, is detailed in Section 6. An Eclypse based framework that

integrates all tools is shortly described in Section 7. A case study is presented in Section 8.

Finally, some conclusions and future developments are discussed in Section 9.

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 255

2 Related work

The CoWare [10] approach uses the Platform Architect and Processor Designer tools to

model multiprocessor platforms. The Processor Designer tool allows the specification of

processors using LISA-2.0 [16] while the Platform Architect tool uses SystemC to model

and simulate the platform.

STepNP [24, 25] is a platform exploration tool for the design of Network Processor Units

(NPUs). In STepNP designers are restricted to a pre-defined set of processors. They can

choose from ARM, PowerPC and DLX simulators. STepNP developers are also planning to

include Xtensa [19] and LISATek [16] processor models.

In the Component Based Design methodology [8, 9, 12, 23] processor simulators are

wrapped in components. An ad hoc wrapper generation scheme is built, and the configuration

parameters for the processors instantiation are defined. In a second phase, the designers set

the configuration parameters values in order to construct the platform simulation model.

EXPRESSION [15] is an architecture description language that is suited for the description

of different types of architectures: VLIW, ASIP, DSP and conventional processor architec-

tures, like RISC. Functional, cycle accurate and compiled simulators can be generated from

an EXPRESSION description. Despite of being a powerful ADL, EXPRESSION based

simulators are basically used for the processor toolkit generation and not for describing

multiprocessor platforms.

The SpecC methodology focuses on the system specification without making any assump-

tion about the target architecture. Its objective is to allow the gradual refinement of a system

level description down to a synthesizable description. A detailed tutorial is given in [13].

The SpecC environment supports architecture allocation and communication synthesis.

The automatic interface synthesis is described in [2, 26], and focuses on the automatic

refinement of system level communication, which is based on channels through the bus

functional model of the target architecture.

Sesame is a modeling and simulation environment for system-level design, based on the

Y-chart design approach [29], where application and system architecture are described inde-

pendently. Its goal is to enable a fast performance evaluation of the system in the early steps

of the design cycle. Two features distinguish the simulation in the Sesame environment. First,

application and architecture are simulated in separate simulators. During the execution of the

application it generates operation and communication traces that are used by the architecture.

Actually, the application is not executed in the target architecture. Traces annotated with the

actions performed by the application processes work as stimuli to the architecture model.

Sesame appears to support partial simulation because it does not simulate the application

running on the target architecture, it uses trace driven simulation or co-simulation between

the application and the architecture.

SPADE was the base of Sesame, and basically has the same features. The main difference

comes from the fact that it uses a C++ library called YAPI [11] to describe the Kahn process

network that implements the application functionality. SPADE uses Kahn process Network
(KPN) [20] for application modeling with unbounded fifo channels for communication. The

work performed in SPADE [22] also uses communication traces generated by the application

as an input to the architecture.

COSY [7] uses a transaction level approach to ease the task of building and exchanging IP

cores. The main idea behind COSY is to have an application level description of the IP core,

and possibly several models for hardware and software. Application level descriptions are

based on the Kahn Process Networks that communicate through unbounded fifo channels.

Springer



256 C. Araujo et al.

Table 1 system level design tools comparison

CoWare StepNP CBD SpecC SPADE COSY Sesame Metropolis

simulation x x x x p p p x
high level − x − x x x x x
analysis
generic app. x − x x − − − x
domain
proc. x p p p − − − −
integration
proc. x − − − − − − −
modification
comm. p x p x x x x x
mapping
system SystemC Click heterog. SpecC − − YML heterog.
level spec.
architecture SystemC SystemC SystemC SpecC YAPI ? YML SystemC
spec.

A generic implementation model of the communication scheme has been developed, and

concrete implementations of hardware and software combinations have been proposed [7].

Metropolis [6] is a framework that provides support for the modeling, simulation and anal-

ysis of digital systems at different abstraction levels. It defines a metamodel that describes

the system behavior formally, allowing refinement of the system in a secure manner. The

Metropolis meta-model can also be used to model the architecture of the system at a high ab-

straction level, this includes the processors and interconnection structures of the architecture.

In order to compare the above-mentioned approaches some features have to be care-

fully analyzed: (1) the support for automatic processor integration; (2) the availability of

mechanisms for mapping the application into the target platform; (3) support to processor

architecture description and modification; (4) availability of analysis mechanisms at differ-

ent abstraction levels; (5) system-level specification language; (6) architecture specification

language; (7) support to generic application domains; (8) simulation support. The results

from the analysis of these features are summarized in Table 1. The legend in the table is

interpreted as follows. A “x” means full feature support. An entry marked with “p” means

partial feature support. An “?” mark means that the researched literature is not clear about

that feature. Finally a “-” indicates that the feature is definitely not supported.

The tools in the table above can be divided in two groups. The first group, including CoW-

are, StepNP, component based design (CBD) and SpecC, uses simulation or co-simulation

for system evaluation. This shows that simulation continues to be one of the most used

evaluation mechanisms for digital systems. Besides the use of simulation StepNP provides

high-level analysis mechanisms to check system level communication and behavior in the

target architecture. For example, the designer can follow packet processing while simulat-

ing the routing application. The limitation of StepNP is that this analysis mechanism is not

generic, but specific to the packet routing application domain.

The tools in the second group (SPADE, COSY, Sesame) provide partial support for sim-

ulation, since the execution of the application in the target architecture is trace driven. The

Metropolis is an exception in this group as it provides support for simulation running on

the target architecture.In these tools, the designer can analyze communication in the target

architecture at the system-level. The same lack of flexibility of StepNP is also observed in

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 257

these tools. They are used for specific application domains: multimedia and digital signal

processing applications.

Another relevant point in Table 1 is the lack of support to the automatic integration and

description/modification of the processor specification. The tools in the first group provide

just partial integration support as they provide ad hoc schemes for integrating processor in

the target architectures. The tools in the second group do not provide this support. This is a

very desirable feature, since processors are very critical components on almost all embedded

system designs. If designers cannot modify processor features, such as cache configuration,

they are severely limited in their ability to optimize the whole embedded system architecture.

A closer look to the first group shows that they use two languages for architecture de-

scription: SystemC and SpecC. These are system level languages that allow the description

of high-level behavior as well as low-level hardware behavior. CoWare uses also SystemC

as the specification language. The same happens to component based design that accepts

heterogeneous languages but which has SystemC as a base language. SpecC tools use SpecC

for both system specification and architecture. Thus, the use of a single language in all the

parts of the system seems to be tendency that is gradually consolidating. Heterogeneous

languages are used mainly for compatibility and reuse. Even in the second group, Sesame

uses the same language for system specification and architecture model.

3 Modeling multiprocessor platforms using ArchC and SystemC

Multiprocessor platform simulation presents its own nuances and particularities that are

depicted in the platform example of Fig. 1. First, it is necessary to integrate an instruction

set simulator (ISS) for each processor instance in the platform. Different ISSs can be used

depending on the design space exploration done by the designer. In the example of Fig. 1,

which shows a typical platform for computing intensive control applications, four ISSs are

being used: 1 RISC processor that can be a MIPS or SPARCV8, and three instances of the

8051 micro-controller (a CISC architecture).

The embedded application running on a multiprocessor platform is composed of con-

current tasks, each running on one processor and communicating using the interconnection

(RISC)

MIPS/SPARC

reg mem

(CISC)

8051

reg mem

(CISC)

8051

reg mem

DISPLAY

(DEVICE)

MEMORY

(DEVICE)

reg mem

(CISC)

8051

Slave Devices

protocol

logic

decodification

logic

ISSs

Bus Protocol

Embedded ApplicationFig. 1 A multiprocessor

platform model

Springer



258 C. Araujo et al.

structure protocol of the platform. The ISS simulators must be synchronized to run in parallel

and also to implement the platform interconnection protocol. In other words, read and write

instructions (memory-mapped IO) and IO instructions, that use special registers must make

use of the platform protocol while executing in the simulator.

It is also necessary to define how the addresses issued to the interconnection structure

protocol will be decoded. The decoding logic determines the address ranges for each slave

component connected to the bus. We are assuming a bus as an interconnection structure,

though our approach can be easily extended to any other mechanism, like a Network-on-a-

Chip (NoC).

The first difficulty in implementing a simulation model for a multiprocessor platform is

to find the proper ISS simulators for the processors. The ISS simulators can be obtained

basically from three sources: stand-alone simulators, third party components or from the

output of ADL based tools. Stand-alone simulators are programs designed to run executable

code compiled to a target architecture. The problem in using this kind of simulator is that

two applications need to run in parallel, the platform simulator and the ISS simulator. This

results in complicated ad hoc schemes that are difficult to handle. A third party component

ISS is a processor simulator normally described in some hardware description language and

distributed as it is by its creator. The most common are described in VHDL/Verilog and

recently in SystemC. In this case, it is necessary to create a wrapper around the component

and to add it to the platform model. When the platform simulator is the same as the processor

component, the integration task is easier. On the contrary, it is also necessary to implement

the communication between the platform and the HDL simulator. A third alternative makes

use of an ADL based tool to generate a component from a processor architecture description.

The component is then used as a third party simulator. In this case, the designer has more

flexibility to modify the processor, or even to build new ones. Most of the platform simulation

environments use the first and second approaches. The consequence is a reduced set of

available processors. Others use some ADL languages that allow the modifications in the

processors, but that are limited to some families. Finally, in cases like the Coware Platform

ArchitectProcessor Designer [10], a platform simulation and a processor development tools

are used together.

The approach in this paper is based on the use of SystemC to model system level behavior,

and also the simulation platform. The SystemC simulation models of platform processors

can be obtained from ArchC descriptions, a SystemC based ADL; additionally, SystemC is

also used to specify other platform components, such as bus and devices.

An overview of this approach can be seen in Fig. 2. The system behavior is modeled as

concurrent processes that communicate through SystemC sc fifo channels. The concurrent

threads functionality and communication are extracted from the system behavior description

and mapped to the components of the target architecture.

Each concurrent process in the system behavior is refined, manually, to C code and is

assigned to run in one of the processors in the target platform. The C code is compiled using

a cross-compiler that generates executable code for the specific processor. This code is loaded

in the platform simulator and executed.

When modeling the target platform, ArchC is used for specifying the processors and

PArchC for describing the interconnections structures and devices that compose the struc-

ture of the platform. This structure is extracted using the acxtor tool prior to the mapping.

The platform description resulting from this phase does not include any mechanism for

implementing synchronization and communication among processors. Such kind of mech-

anism is introduced during the mapping phase. The main goals of mapping are twofold.

First the application must be compiled for some processor in the platform. The second goal

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 259

acsys

Mapping

(SystemC)

Platform + Communication

gcc

Communication
Extraction

library
components

(acxtor)

Structure Extraction

(SystemC)

System Behavior

Platform Simulator

Analysis

GCC

Processor Applications

Task Behavior
Extraction

(ArchC, PArchC and SystemC)

Platform Modeling

Fig. 2 Methodology overview

is to generate a platform description including a mechanism for processor communication

through the platform interconnection, if the application includes communicating processors.

The proposed mapping approach provides some support for implementing this communica-

tion mechanism in a (semi) automated way. During this phase, the designer should define the

processes allocation by taking into account the processors available in the platform. The map-

ping phase produces the compiled application and a platform description, which are capable

of implementing process synchronization and communication when the application runs.

After the mapping phase it is used the acsys tool that takes the description of the platform,

the mapping information and the components (interconnection structure and devices) from

the components library and generates SystemC code of the platform.

The platform description with embedded communication can be compiled resulting in an

executable file, which is the platform simulator. When running this file in conjunction with

the application code some metrics can be extracted, allowing the designer to change either the

platform or the application mapping, in order to meet the design constraints. The next section

gives a short introduction to ArchC, followed by a description of the platform modeling

mechanism, and the proposed strategy to implement communication among processes.

4 Describing processors using ArchC

ArchC is an open-source Architecture Description Language (ADL) [5] designed to enable

the description of processor cores. ArchC supports different levels of abstraction, allowing

the designer to start at a functional level and refine the processor until it reaches a cycle-

accurate model. A set of tools can be generated using ArchC: interpreted SystemC simulators

and compiled C++ simulators, GNU assembly (gas) and linker (ld) back-end, GNU GDB

support interface and co-verification checker between two ArchC models.

Springer



260 C. Araujo et al.

Fig. 3 Sample code of an

architectural description of the

SPARCV8 processor using

ArchC (sparcv8.ac)

Every processor description in ArchC should follow a strict design roadmap indicating

(by its version number) the milestones reached in the model implementation. For example,

a 0.4 version processor model is able to emulate the Linux operating system calls and a 0.7

version model is capable of running MediaBench [21] and MiBench [14] programs.

4.1 ArchC syntax and semantics

An ArchC description is divided into two parts: theAC ARCH, which contains the architectural

resources used by the model, and AC ISA that describes the instruction set architecture.

Figure 3 shows the architectural description (AC ARCH) of a SPARCV8 [27] functional

processor model. The keywords used to specify the resources in the example and their

meanings are:� ac wordsize: specifies the architectural word size in bits (line 2)� ac mem: declares a memory vector that the simulator will use (line 3)� ac regbank: declares a register file and assigns a name to it1 (line 4)� ac isa: specifies the file that contains the processor ISA description (line 6)� set endian: specifies the processor endianness (big or little) (line 7)

There are also keywords to describe pipelines, pipeline registers, caches, etc. For more

information, refer to [28].

Figure 4 shows a subset of the AC ISA description for the SPARCV8 processor presented

in Fig. 3. Three instruction formats are declared using the keyword ac format. After that,

some SPARCV8 instructions are declared using the keyword ac instr and one format

as template. Notice that the instruction identifier, declared here, does not need to be the

instruction mnemonic. Every instruction has one or more set asm method calls to declare

its assembly syntax and a set decoder method to describe the decoding sequence. As

an example, the add instruction, identified as add reg, uses the Type F3A format and is

encoded with fields op=0x02, op3=0x00 and is=0x00 (line 14).

One important feature of ArchC is that a SystemC instruction decoder is automatically

generated based on the set decodermethods for each instruction. The processor designer

has only to specify the behavior of the instruction in SystemC but not the behavior of the

instruction decoder.

The next step, after modeling AC ARCH and AC ISA, is to describe the instruction behav-

ior. Figure 5 shows the simplest implementation for instructions add reg (add register) and

1 In this example, the SPARCV8 processor has only one register window. A full SPARCV8 model is available

at the ArchC web site [17].

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 261

Fig. 4 Sample code of an instruction set description for the SPARCV8 processor using ArchC

Fig. 5 Sample behavior for instructions add reg and ld imm in ArchC (sparcv8-isa.cpp)

ld imm (load immediate). As an example, the instruction add reg behavior, declared as

ac behavior(add reg) (lines 5−7), is just one line of SystemC code, contain-

ing two register reads from the previously declared register file (RB) and one register write.

ArchC also allows a hierarchical behavior description. Since every SPARCV8 instruction is

4 bytes long, the program counter (ac pc) increment is done only once inside the global

behavior2 (lines 1–3), ac behavior(instruction), which is automatically called be-

fore every instruction execution. ArchC also has one behavior specific for each instruction

format. In this case, they are empty as they are not necessary for this particular model.

In the example, the actual execution of the add instruction follows this calling sequence:

ac behavior(instruction) followed by ac behavior(Type F3A) and finally

ac behavior(add reg). This sequence is automatically handled by the simulator.

2 This simplified version does not take into account the branch annul bit. You can see how it is implemented

in the model available from the ArchC web site [17].

Springer



262 C. Araujo et al.

4.2 ArchC design support

ArchC provides a set of tools to help in design space exploration. The interpreted simulator

generator (acsim) is the most used. It receives, as input, an ArchC model, composed of

AC ARCH and AC ISA and generates a SystemC simulator that is linked to the instruction

behaviors described above. In its 2.0 version the interpreted simulator can reach up to 10MIPS

on a Intel Mobile Celeron 1.7 GHz, 512 Mb RAM, running Kubuntu Linux 5.10, using

g++ 4.0.2 (200500808) with the compilation parameters −O3 -march = pentium4m. The

simulation speed can be improved using the C++ compiled simulator (accsim), which can

reach up to 200 M instructions per second on the same machine. This huge speedup comes

from improvements on the simulator structure and on pre-processing [5] the binary program

to be executed. Both kinds of simulators are able to emulate a set of the Linux system calls,

so that big programs, with inputs and outputs, can run without any source code modification.

A GNU GDB debug interface can be enabled into the interpreted simulator to allow

debugging and inspection of the execution environment. A GNU assembler (gas) and linker

(ld) back-end can also be generated automatically. For these three features, a few more

information must be given in the processor description, to expand the assembly syntax and

to identify the processor resources.

Processors already implemented in ArchC, range from small micro-controllers like PIC

and Intel 8051 to big processors like MIPS, Sparc and PowerPC. They are all available for

download, along with the ArchC toolset, at the ArchC web site [17].

In order to provide support for platform modeling the ArchC language has been extended.

From now on this extension will be called PArchC (Platform ArchC) and will be discussed in

the following sections, while the original unmodified version of the language will be called

ArchC.

5 Describing multiprocessor platforms

When using a design paradigm based on platforms the designer must have platform models

at distinct abstraction levels: functional models are necessary for validating the application,

transaction level models are interesting to evaluate bus contention, whereas cycle-accurate

models are necessary to performance evaluation. The approach described below allows to

specify platforms at these different abstraction levels.

In the current version we are supporting the platform model depicted in Fig. 6. Each

processor has local memory and a shared memory is used only for process communication.

In order to allow the specification at distinct abstraction levels a wrapper is located between

the processor and the interconnection mechanism. This wrapper provides an interface of the

processor with different buses, or the specifications of a bus at distinct abstraction levels.

Currently we are supporting OCP and AMBA interfaces.

Besides the role of interface adapters, wrappers are responsible for allowing the syn-

chronization between processors and the interconnection structure. For that purpose they

implement a master/slave protocol enabling a SystemC processor to send and receive infor-

mation from a SystemC bus model, through read and write operations. The adaptation of

processors and buses with different endiannesses, data and address widths, is also done at

the wrapper.

The standard ArchC language supports the description and implementation of a stand-

alone processor simulator. In order to support the specification of a multiprocessor platform, as

well as the implementation of a mechanism for synchronization and communication between

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 263

memory
local

P1
(sparcv8)

memory
local

AMBA Bus

Wrapper

MEMORY

(sparcv8)
P2

Fig. 6 A multiprocessor

platform

core

ISS

A
M

B
A

SPARCV8 Processor

MEM

memory mapped IO storage–amba master protocol  port binding

Fig. 7 The supported processor

model

processors, the language has been extended as depicted in the SPARCV8 specification of Fig.

8 [4].

The extension includes new constructs for specifying mechanisms to connect the processor

with platform devices, such interconnection, memories, etc. The ac protocol declara-

tion has been added in order to specify ports that implement a specific protocol. It supports

the declaration of master or slave ports and is defined by the 6-tuple 〈t, d, n, aw, dw, s〉.
The parameter t determines the type of supported protocol. The d parameter determines the

direction of the port, i.e. master or slave. Parameter n represents the name of the protocol port,

and parameter aw is the address bus width. Parameter dw determines the data bus width.

The last parameter s gives the number of protocol ports of that type in the processor.

The protocol port declaration can be seen in line 6 of Fig. 8. It declares one master port

which implements the AMBA protocol [1]. The port has an address and data bus width of

32 bits.

The protocol port declaration simply defines the processor ports and the protocol each port

implements. The bindsTo declaration is a method that specifies which storage element

of the processor is connected to the processor port (registers or memory). Line 12 of Fig.

8 shows one example of such binding. In this case the memory MEM is connected to the

AMBA BUS protocol port implementing a memory mapped IO access. The use of bindsTo

Springer



264 C. Araujo et al.

Fig. 8 AC ARCH description and architecture extensions (modified sparcv8.ac)

implements the connection of the memory to the protocol port. It is also necessary to define

the addresses range used for the I/O operations.

The set rangemethod is used to define the memory map of the processor. This method

is used when an storage element has been bound to a protocol port. It determines the address

ranges that are accepted by the storage element and by the protocol port. Lines 14 and 15 of

Fig. 8 declare that addresses in the range (0x00000000,0x05000000) are recognized by the

memory MEM while addresses in the range (0x0500001, 0x0a00000) are accepted by the

protocol port AMBA BUS. The memory map for a component can be composed of several

address ranges, i.e., the designer can use the set rangemethod multiple times for a single

storage element or protocol port.

In summary, the processor description in ArchC must include the ports declarations, how

these ports are connected with memory or registers, and the memory map in the case of

memory mapped IO. New constructors have been defined, with a syntax very similar to the

ArchC syntax, in order to ease the task of plugging a core to the platform.

In order to be able to communicate through a bus, the processor must include some

interrupt mechanism. In this sense, PArchC extended ArchC to support the modeling and

simulation of interrupts. The extensions include the definition of the INTERRUPT proto-

col port, the interrupt declaration, and mechanisms to describe the interrupt controller and

interrupt behavior.

The interrupt protocol port also describes a master/slave relation where the processor

contains a slave interrupt protocol port. External devices can interrupt processors with this

port.

The processor of Fig. 9 uses memory mapped I/O and has been modeled by binding mem-

ory MEM to the AMBA master protocol port, named AMBA. In the example we also show one

of the interrupts provided by the SPARCV8 processor, interrupt level 1 and its interrupt

controller. This interrupt is bound to the interrupt slave protocol port INT1. Any interrupt

request issued at the INT1 port is handed to the interrupt interrupt level 1.

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 265

core

ISS
interrupt controller

DM

INT1

A
M

B
A

SPARCV8 Processor

interrupt_level_1

interrupt protocol portinterrupt/interrupt  port binding

storage–ocp–ip master protocol  port binding

Fig. 9 SPARCV8 processor model example

The ac interrupt declaration is a simple way for the processor designer to specify

processor interrupts (see figure below). Using this construct the designer declares an interrupt

with a specified name. For each interrupt the simulator engine checks the occurrence of a

valid interrupt request prior to the instruction execution. This procedure is transparent to the

processor designer.

The ac interrupt declaration syntax is shown below. It is composed of the

ac interrupt keyword followed by the interrupt name provided by the user and end-

ing with a semicolon.

ac interrupt interrupt name;

Associated with the interrupt declaration it is also necessary to describe the interrupt

behavior. PArchC extended ArchC similarly in the ISA declaration scheme, i.e., a template

of the behavior of the interrupt is generated automatically. The designer must complete

this template using SystemC constructs. The simulator generated for the processor checks

automatically the occurrence of a request for the interrupt and when this happens it executes

the interrupt behavior specified by the designer.

The interrupt controller functionality of the processor is implemented by two methods,

one implements the processor behavior when an interrupt request is issued and the other

implements the arbitration when multiple requests are pending. The implementation of the

request trap and get pending request methods for the sparcv8 processor are

shown in Fig. 11. The request trap method is called when an internal or external interrupt

is issued to the processor while the get pending request method is used to implement the

interrupt priorities when more than one interrupt has been requested. These methods are

available to the processor designer and preserves the ArchC style to describe the ISA. In the

same way an “architecture name”-isa.cpp template file is automatically generated allowing

the designer to describe the instruction behavior, it is also generated a “architecture name”-

Springer



266 C. Araujo et al.

Fig. 10 Interrupt declaration and behavior

Fig. 11 SPARCV8 interrupt controller request and arbitration methods

trap.cpp template file with the request trap and get pending request methods

that implement the interrupt request and arbitration respectively.

The processor designers have full access to any processor resources declared in the pro-

cessor architecture description. For instance in the get pending request example of

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 267

Fig. 12 AC SYSTEM and include declarations (platform.ac)

Fig. 11 it can access register PSR. It can make use of typical C++ constructs like the map

declaration using the typedef C/C++ keyword, a SystemC feature.

The request trap method takes the interrupt identification and device identification

as arguments. The device identification feature allows the designer to share a single interrupt

by several external devices.

Figure 12 shows the specification of a platform including two SPARCV8 processors

connected to an AMBA bus, as depicted in Fig. 6. Each processor has its local memory

hierarchy but a shared memory is included in the platform for processor communication. The

memory address range dedicated to IO is (0xA00001, 0xB00000).

The constructor #include allows the reuse of processor descriptions in ArchC, as well

as SystemC bus and device specifications. The use of this constructor can be seen in lines 2–3

of Fig. 12. The first line includes the AC ARCH files for the SPARCV8 processor, whereas

the next two lines include an AMBA bus SystemC TL model and a memory model.

Springer



268 C. Araujo et al.

The platform itself is modeled using the AC SYSTEM constructor. This declaration has

a similar syntax to the AC ARCH declaration for processors. AC SYSTEM is a composed

declaration divided in two parts. The first part is used to declare the platform components

such as processors, buses and devices.

The processor and device declarations have a syntax similar to the protocol port

declaration, in the processor description. Processor declaration is specified using the

ac processor constructor, which includes the processor name (same name of the ArchC

description) and names of processor instances in the platform, separated by commas. An

example of an ac processor declaration can be seen in line 10 of Fig. 12, where

two SPARCV8 processors named P1 and P2 are declared. Device declaration is done

similarly, but using the ac device constructor. Line 14 declares a memory of type

AMBASlaveMem.

By using the ac system bus template, the designer can declare interconnection struc-

tures. The declaration specifies the bus name, bus instances names and the address and data

bus widths. An example of system bus declaration can be seen in line 12 of Fig. 12, where

an AMBA bus named BUS is declared. Its address and data bus widths are 32 bits.

The second part of the AC SYSTEM declaration, delimited by the SYSTEM CTOR key-

word, is used to build the platform. It has a similar syntax as theAC CTOR part of the processor

description. It is used to set the memory size parameter value and specifies the connection

of the memory hierarchy to the processor. The memory size is set to 5,242,880 (5 Mb) by

the set parameter declaration. The connection of the components is performed with

the same bindsTo statement used in the AC ARCH declaration. Despite having a similar

syntax, the semantics of the this statement is master connects to slave. The master connects

to the slave in one of two ways: explicitly declaring the ports to be connected or implicitly

(only one port). In the explicit form, the port names of master and slave devices being con-

nected must be provided. This is necessary, in the case master and/or slave having more than

one protocol port. One example of an explicit connection is given at line 17 of Fig. 12. Port

AMBA BUS of the instance P1 of the SPARCV8 processor is explicitly connected to the

BUS. Examples of implicit connections are given at lines 18 and 19 of Fig. 12.

Once the platform structure has been specified, it is necessary to specify how the platform

will behave, by giving information about the memory map and the application running on

each processor. For this purpose, three news methods have been defined: set range,

load and load obj.

The set range method is used to define how the decoding logic of the interconnection

structure will decode the addresses issued by the master elements. Using set range the

designer informs, in a simple way, the address ranges for each slave in the system. He/she does

not have to take care on how the interconnection structure will implement the address decoder.

Methodset range has a similar syntax and semantics as the memory map declaration used

for the memory hierarchy of the platform. Line 21 of Fig. 12 shows an example of a memory

map using set range. Any address in the range (0x600000, 0xA00000) will be decoded

to the MEMORY device .

The embedded application is composed of executable code for each one of the processors

in the system. The mapping of the embedded application is performed using the other two

behavioral declarations. Method load obj allows the designer to directly map binary code

to the chosen processor. Using load it is possible to map executable code in the ArchC

hexadecimal format [28]. Lines 26 and 27 of figure 12 show the mapping of the application,

composed of one executable code in binary format and one in hexadecimal format.

The AC BUS declaration is used to define the interface of the interconnection structures of

the platform. In the example of Fig. 13 an AMBA bus is declared. The bus has the following

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 269

Fig. 13 AC BUS declaration (amba.ac)

Fig. 14 AC DEVICE declaration (ambaslavemem.ac)

AMBA compliant ports, one instance of a master port and two instances of a slave port. As

the parameters in the protocol port declaration are literals, the bus address and data ports are

parameterized. The implementation of the each declared protocol should be available in a

library.

Similarly, the AC DEVICE declaration states that there is a SystemC module that im-

plements the declared interface. In the example of Fig. 14 the AMBASlaveMem device

is declared. In this case, however, the parameters of the protocol port are integer values,

meaning that the device can only be connected to an AMBA bus with 32 bits of address and

data widths.

Using the ac parameter declaration the component designer can define parameters

types that can be set by the system designer during the platform creation. In the case of the

AMBASlavMem component of Fig. 14 there is the size parameter of type INT. In this case

the size of the memory can be set by the system designer.

The above description is processed by the acsys tool. It takes the platform description and

generates a SystemC simulation model of the platform. By using a simple command line, the

designer can generate code for the platform.

The functional implementation is based on the SystemC AMBA channel model [1]. This

channel allows one master and one slave components to exchange information that is param-

eterizable in the data and address types. The main advantage of this type of channel is that

they are timeless and provide a much better performance during simulation. On the other

hand, the lack of time information makes it difficult to detect synchronization problems. Us-

ing this type of channel the designer can validate the functionality of the application running

on the platform, but cannot identify synchronization problems nor evaluate communication

performance.

The usage of the acsys tool is quite simple. It is a command line tool that takes three

arguments. The first is the name of the PArchC file containing the platform description. The

second argument determines the abstraction level of the communication protocols ports of

the platform. The last argument determines whether or not the system should generate trace

files for the protocols. The usage of acsys is shown below:

> acsys input file [-p[abstraction level flag]] [-tp]

Springer



270 C. Araujo et al.

6 Mapping an application onto a simulation platform model

In order to tune the platform for an application, or application domain, the designer should

be able to simulate the application by taking into account different platforms, or platform

configurations. For each platform or platform configuration to be evaluated, the designer

must first map the application into it. If the application includes communicating processes,

it is necessary to introduce additional components for implementing synchronization and

communication between the processors using the platform interconnection structure. Em-

bedded software must also be developed to implement communication at the processor

side.

In the case of applications written in SystemC, our methodology includes a mechanism

for implementing synchronization and communication processes running on different pro-

cessors, in a semi automated way.

Synchronization by event waiting and notification, as well as communication through

channels, are supported by mechanism as explained below.

6.1 Process synchronization and communication in SystemC

SystemC 2.0 supports the concept of dynamic sensitivity. This mechanism allows processes to

be sensitive to the notification of different events during its execution. The dynamic sensitive

mechanism can be better understood by using the simple producer consumer example of

Fig. 15. The producer process halts the execution when it executes the wait() method,

and resumes the execution after the consumer process notifies the start event using the

notify() method.

By using dynamic sensitivity for synchronizing processes, the designer can define several

different events and make the processes sensitive to any of them during its execution.

Task communication is implemented in SystemC by the use of channels. SystemC specifies

two types of channels: primitive and hierarchical. Hierarchical channels are used to model

Fig. 15 Producer consumer

example

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 271

p
ro

d
u

c
e
r c

o
n

s
u

m
e
r

sc_fifo

P1
(sparcv8)

P2
(sparcv8)

AMBA Bus

Fig. 16 The mapping problem

complex communication like buses and are not in the scope of this paper. Primitive channels,

on the other hand, are the basis to model system level communication mechanisms like

FIFOs, mutual exclusion (MUTEX), etc.

Channels are characterized by the interface they implement. An interface defines the

methods the channel must implement. For instance the sc fifo channel implements the

write() and read() methods of the sc fifo read if and sc fifo write if interfaces. Fifo channels

have been used in the producer consumer example of Fig. 15.

Another feature of channels is that they include the above mentioned synchronization

mechanisms. In that example, the consumer processes will block when the CH0 fifo is empty,

during a read operation. It will remain blocked until the notification of the data written event,
by the write operation, is executed in the producer process.

When executing a SystemC application including communicating processes, the synchro-

nization and communication is implemented by the simulation kernel. If this application will

run in a multiprocessor platform, the synchronization and communication must be imple-

mented by using the platform components.

The problem is how to map these resources to a multiprocessor target architecture, as

depicted in Fig. 16. Designers have to do a lot of manual work to achieve that. It is necessary

to define the memory addresses used by the channel. It is also necessary to define how

processor resources like interrupts are used.

In the following we describe how synchronization and communication are implemented

in our methodology.

6.2 Implementing process synchronization and communication

Once the functionality of the system specification has been validated by simulation, it is

necessary to map its behavior to the target platform. One example of such target platform

is given in Fig. 16. It shows a platform composed of two processors and an AMBA bus.

Some scheme must be included in order to support the implementation of communication

and synchronization among processors using the interconnection structure and inserting a

shared memory for communication purposes.

Springer



272 C. Araujo et al.

A question that arises from the mapping task is how to implement communication between

application tasks in the SystemC model of the target platform. In our approach a communica-

tion architecture including event managers, critical region controller and embedded software

is automatically generated and inserted in the platform description [3].

The mapping step is taken after the communication and architecture extraction as hab

been seen in Fig. 2. Once the designer has specified the platform, the acxtor tool takes the

platform description and extracts structural information. The structural information includes

a number of features of the processors, the address range of the shared memories and the

interconnection structure of the platform.

In parallel, information from the application must also be extracted from the description,

or provided by the designer. Among others, application information includes tasks, event, and

channels names. The tool also extracts, from the application, which channels are being used at

each task, as well as through which interface are the events notified and expected. A technique

for extracting the information application has been developed by using introspection tools.

Once the application and platform information has been extracted, the designer defines

process and communication allocation, i.e., which processor, processes and bus will be used

to implement communication.

The designer gives the allocation information, either using a text file or by fulfilling

electronic forms available from a graphical interface. The Application Mapper tool takes the

mapping, the application information, and the above mentioned platform information and

generates appropriate C code. This code runs communicating processes inside the processors,

implementing the wait and notification events at the processor side.

The Platform Mapper tool also takes the mentioned information to generate a platform

model which is able to implement process synchronization and communication. A complete

SystemC platform model can be obtained using the acsys tool. In the next sections, the

strategy for implementing communication and synchronization will be explained.

6.2.1 Implementing process synchronization

As SystemC synchronization is represented by assynchronous events that processes can notify

or wait for nofification, the proposed approach for the implementation of synchronization

between tasks running on different processors is based on hardware and software support.

Processors that are running tasks that wait for a event notification are interrupted and the

interrupt routine handles the notification. Hardware support is provided by Event Manager

Modules (EVM). These devices are responsible for generating the appropriate interrupts

when an event notification occurs.

Another feature of SystemC is that the implementation of its primary channels, like sc fifo,

makes use of assynchronous event. In the case of the sc fifo channel used in this work,

there are two events data read event and data written event. The modified platform model,

which capable of implementing process synchronization and communication is depicted in

Fig. 17. For each processor an event manager module (EVM) is inserted, which is specified

in SystemC. The main goal of this device is to store the events expected by the task running

in the processor, as well as the events notified by the task. Additionally, it must interrupt

the processor in the case an expected event has been notified by some processor. Each EVM

device is connected to the bus and also to the processor, through a protocol port.

In order to allow each task to notify and wait on events, embedded software is automatically

inserted into the application code. This code is organized in layers as explained later.

The EVM device is responsible for handling the wait and notification of events between the

tasks running in the processors of the platform. It is used to implement wait(event) calls in Sys-

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 273

MEM

P2
(sparcv8)

P1
(sparcv8)

AMBA Bus

EVM1 EVM2

CRL

Interrupt port

Fig. 17 A platform model for implementing process communication and synchronization

temC in the system behavior description. One event manager device is assigned to each pro-

cessor in the platform and it interrupts the processor every time one event that is being expected

by the task running on the processor is notified by another task running in a second processor.

It is composed of two main components: the notification fifo and wait event table. The

wait event table stores the events that are expected by the task. It plays a fundamental role in

the system as event notifications that are not being expected by the processor associated with

this EVM are ignored by the EVM. This avoids the generation of unnecessary interrupts in

the processor. The number of table entries in the EVM is equal to the maximum number of

events that can be expected by the tasks running in the processor.

The role of the notification fifo is to discipline the order of event notifications that must

be treated by the processor whose task has been notified. The size of the table is also equal

to the maximum number of events that can be notified.

The event manager also contains two ports. One protocol port that implements the interface

with the interconnection structure of the platform. The second is a master interrupt protocol

port that is connected to the slave interrupt protocol port of the processor.

The structure of an EVM device is shown in Fig. 18. It is composed of a fifo including all

events to be notified and a wait table, which includes the expected events. The communication

with the processor is done through a protocol port, which supports a master protocol to

interrupt the processor.

In order to better understand the synchronization scheme consider the producer consumer

example running in the platform of Figure 17. Task Producer is running on processor P1,

whereas task Consumer is executing in processor P2. Consider the scenario depicted in

OCP Slave

event id

INTERRUPT

master protocol port

wait processor table

processor
notification fifo

(a) event manager device

processor

event

application_event

(b) event sw
layers

Fig. 18 EVM device and

software layers

Springer



274 C. Araujo et al.

MEM

P1
(sparcv8)

Table
WaitFIFO

P2
(sparcv8) Table

WaitFIFO

EVM2

12

3

45

2 Producer writes notified event in EMV2 FIFO

3 EVM2 compares events in wait table and in FIFO

4 If events are the same EVM2 interrupts Consumer

5 The interrupt routine checks event
Consumer continues the execution

1
and enters in a loop for waiting event
Consumer writes waited event in EVM2 wait table 

AMBA Bus

CRL

EVM1

(producer) (consumer)

Fig. 19 A platform model for implementing process communication and synchronization

Fig. 19, where the Consumer is waiting on event start event (1). The Consumer writes the

event id of the start event in the wait table of EVM 2 (2), and checks the corresponding

notification flag (initially this flag is false) until it becomes true. When task Producer notifies

the event start event it writes the event id in the FIFO of EVM 2. The device EVM2 is always

looking for some write into the FIFO, and when something is written, it compares the id of

the FIFO with the id in the wait table (3). If the ids are the same, EVM 2 interrupts task

Consumer (4). The interrupt handling routine receives the notified event id and changes the

corresponding notification flag (5).

In order to allow the platform processors to access the corresponding EVM, embedded

software is generated. This is a set of C files organized in layers as depicted in Fig. 18(b)). The

application is modified by including the application event layer and functions for waiting and

synchronizing events as depicted in Fig. 20. The application event layer is a C file including

instances of the event struct for all events that are expected or notified by the application.

An event is specified in C as the struct Fig. 21.

The event layer includes functions for notifying and waiting events as well as the event

data type definition. The event struct includes the event id field, as well as a notification

flag indicating if the event has been notified or not, and two pointers: one for notification fifo

and the other for the wait table.

The processor layer includes processor dependent code and is customized for each

processor in the platform (data type and processor endianness). This layer includes also

interruption handling functions and initialization code.

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 275

Fig. 20 SystemC producer code

and the generated C code

Fig. 21 Event structure

6.2.2 Implementing process communication

The implementation of communication is very similar to the synchronization implementation

since each communication includes several read and write events. Our model implements

process communication by using a shared memory. In the case of channel communication,

the designer assigns the communication channel to an address range of the shared memory.

Springer



276 C. Araujo et al.

OCP Slave

channel flag

(a) CRL device

processor

communication

application_channels

(b) communica-
tion sw layers

Fig. 22 Event manager device

and software layers

Fig. 23 C communication structs

A SystemC module called critical region locker (CRL) is inserted into the platform in order

to control the concurrent access to the shared memory. Embedded code to access CRL is also

automatically generated and used by the application code running on the processor side.

When implementing blocking communication through FIFOs it is necessary to guarantee

synchronization in the read and write operations. The related events are automatically mapped

to the bus the shared memory is connected. Beyond that, the data part of the channel is assigned

to the shared memory. In this case, it is assigned to the smallest free address range in the

memory that holds the channel’s data.

The CRL device is very simple and has a one byte flag for each channel. When the CRL

is written it works like a register and holds the value written. After being read it sets the

corresponding value to −1, indicating that the channel is locked. The generated embedded

software is also organized in layers. The CRL device and software layers are depicted in

Fig. 22. C code for communication layer can be seen in Fig. 23.

7 A Framework for platform modeling and communication analysis

All mentioned tools have been integrated in the Platform Designer Framework as plugins in

the Eclipse [18] framework. The advantages of this approach is that users have an unified

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 277

SystemC

Mapper

component

library

comm.

library

ArchC

Buider

Platform Designer (Eclipse)

Fig. 24 Platform designer framework architecture

environment with the Eclipse facilities such as a friendly interface and project and files

handling resources.

Figure 24 depicts the Platform Designer framework architecture. Two Eclipse plugins

have been developed the Builder and the Mapper plugins. The Eclipse environment includes

the SystemC simulator, the ArchC and mapping tools, as well as the library of components.

On the bottom of the framework architecture is the SystemC simulator. On top of this

level are the ArchC and PArchC tools for generating the SystemC platform model.

The Builder plugin provides graphical support for describing multiprocessor platforms. By

connecting ArchC processor models, devices, and buses stored in the component library, the

designer can build the multiprocessor platform. The Builder plugin also allows the designer

to set component parameters and to define memory address mapping for devices in the

bus. Using the Builder plugin the designer can also generate the platform model in ArchC

compatible code, compile it using gcc and also execute some application by running the

simulator.

The Mapper plugin provides support for application modeling and its mapping into the

platform by allocating processes to processors and channels to bus. Using the Mapper the

designer can also load executable code to run in the platform processors.

Figure 25 depicts a screen shot of the Platform Designer framework. The reader can see

the Builder and Mapper menus on the menu bar of the Eclipse. The outline of the platform

can be seen on the bottom of the figure. It shows the components the jpeg/adpcm example

with the four processors and the bus.

A SystemC platform model can be seen in the editor view of the framework. The editor

can also be used to visualize the generated SystemC code. On the left hand side is the project

management area for the management of ArchC, PArchC, SystemC and C files.

8 Experimental results

In order to show the effectiveness of our approach for synchronization and communication

synthesis, we have specified a platform with four processors (SPARCV8), and have run four

applications from the Mibench benchmark [14].

The system behavior can be seen in Fig. 26. It consists of the jpeg coder, which reads an

image file in ppm format, compress it and transfers the contents of the file to the jpeg decoder

running on other processor, using a fifo channel. Besides image processing, the application

also includes encoding/decoding of voice data on the ADPCM modules. It also uses a fifo

channel for transmitting the encoded voice to the process running on other processor.

Springer



278 C. Araujo et al.

Fig. 25 Platform designer framework

ch0

sc_fifo(sc_module)

jpeg coder

(sc_module)

jpeg decoder

data type

sc_int<32>

read

interfacewrite

interface

sc_fifo

ch1
(sc_module)

adpcm coder

(sc_module)

adpcm decoder

FIFO portFIFO port

Fig. 26 jpeg and adpcm coder/decoder application

The mentioned application will be executed on the platform shown in Fig. 27. It has been

modeled and compiled using the extensions to the ArchC language and the acsys tool.

Table 2 shows the effort in number of lines for describing the mentioned multiprocessor

platform taking also into account the effort to describe the SPARCV8 processor. As it can

be seen, most of the effort concentrates in the processor description (1656 lines of ArchC

and SystemC code). The reader must also notice that the processor can be reused in other

platforms. The design effort for a processor like the SPARCV8 took 1 month, including the

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 279

Table 2 Coding effort and generated code

Input code Output code obj code (bytes)

Processor 1,656 11,128

Platform 59 158

Syncronization management – 108 7760

Interrupt handler – 17 –

Processor initialization – 63 3136

Communication management – 277 13988

AMBA BUS

evm1 evm2 evm3 crl0 mem0evm0

P0

sparcv8 sparcv8

P1

sparcv8

P2

sparcv8

P3

interruptconnections

Fig. 27 jpeg and adpcm coder/decoder platform

time to study its specification and to test the instructions. It should be clear that the design

effort must no be confused with the coding effort (1656 lines of code).

The tool has automatically generated 11128 lines of SystemC code for the processor, plus

158 lines for the platform, releasing the designer from a hard and error prone task. Beyond that,

the tool has also generated 359 lines of C code to implement the synchronization management,

interrupt routine, processor initialization and communication between the application tasks

running on the platform. Most of the code, 277 lines, is due to the implementation of the

SystemC sc fifo behavior. The compilation of these files with the sparc-elf-gcc, a gcc based

cross-compiler for the sparc architecture, resulted in 21,748 bytes of object.

The compilation time for a platform description takes less than a second in a Pentium IV

machine.

The application mapping the mentioned platform can be seen in Table 3. The jpeg coder

runs on processor P0, and jpeg decoder on processor P1. The adpcm coder and decoder run

Springer



280 C. Araujo et al.

Table 3 jpeg and adpcm

mapping app component Platform component

jpeg coder P0

jpeg decoder P1

adpcm coder P2

adpcm decoder P3

ch0 AMBA BUS

ch1 AMBA BUS

on processors P2 and P3, respectively. The fifo channels, ch0 and ch1, have been mapped to

the AMBA-AHB bus.

When the mapping is done, components are added in the platform for synchronization

and communication purposes. This components are inside the dashed line. Four event man-

agers (EVM0, EVM1,EVM2 and EVM3), one critical region locker (CRL0) and one shared

memory (MEM0) devices have been created. Four interrupt connections between the event

manager devices and the processors have also been added to the platform.

The multimedia application has been run in two models of the same platform: the first one

includes a functional model of the AMBA bus, and the second one includes a cycle accurate

model of the same bus.

The results of both platform models are presented in Tables 4 and 5, respectively. These

results have been obtained by using a Pentium IV machine with 256 Mb of RAM under the

linux Ubuntu 5.10 distribution.

Table 4 shows the results for the application running on a platform with a functional version

of the AMBA-AHB bus. The simulation takes 959,88 sec., with the combined processors

performance of 355 Kinstr/s and a simulation frequency of 184 Kcycles/sec. The instruction

execution rate is compatible with related works, and the simulation performance seems to be

good enough to allow the designer analyse distinct platforms.

Table 4 Functional simulation

results P1 3,236,885 ch1

P2 13,835,574 ch1

P3 147,146,851 ch0

P4 176,811,467 ch0

Total 341,030,777

Simulation time 959.88 s

Processors performance 355 Kinstr/s

Simulation frequency 184 Kcycles/s

Table 5 Simulation results
P1 28,815,995 ch1

P2 39,450,656 ch1

P3 160,489,928 ch0

P4 191,517,699 ch0

Total 420,214,278

Simulation time 1,912 s

Processors performance 219.83 Kinstr/s

Simulation frequency 105 Kcycles/s

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 281

Fig. 28 Communication analysis

Simulation results using a cycle accurate bus model are given in Table 5. Processor P0

executes 28,815,995 instructions to compress a 196,666 bytes ppm image into a 9,810 bytes

compressed jpeg image. It transfers the image file to the decoder module running in P1

through channel ch0. P1 takes 39,450,656 instructions to receive the compressed image and

decompress it to the original ppm format.

The audio application running on the platform takes considerably longer since the input

audio file (pcm format) is bigger (1,368,864 bytes). Processor P2 executes 160,489,928

instructions to compress it to the adpcm format and to send it through channel ch1. The

adpcm decoder modules takes 191,517,699 to receive the compressed data and convert it to

the original pcm format.

By taking a bus accurate AMBA bus model the simulation time is approximately 1,912 s,

two times slower than the previous situation. In this case, we have an instruction execution

rate of 219 Kinstr/s or 105 Kcycles/s. Also here, the performance results show the suitability

of the platform simulator for design space exploration.

In order to analyze the communication between the processors in the platform it has

been inserted monitors in the bus. These devices monitor the read and write addresses and

associate these addresses to the sc fifo channels used in the communication. Addresses that

are not related to communication are marked as PROC. Each three lines of Fig. 28 show the

address, command (read or write) and the data being transferred. In this case the data can

be the sc fifo channel data or control data like the pointers to the buffers the implement the

sc fifo in memory.

The first three lines refer to channel ch0 used by processor 1. It shows that the transfer of

1 32 bit word using the channel takes approximately 1800 PS that gives 18 clock cycles with

a simulation clock period of 100 ps. As can be seen the in the figure the transfer times vary

a lot from transfer to transfer this is due to the assynchronous nature of the sc fifo channel.

When it is full an event must be notified and acknowledge to complete the transfer.

Our approach results in a simulation performance, which is compatible with existing

approaches. Even in the case of using a cycle accurate bus model, the simulation can be done

in a reasonable amount of time and the designer has detailed information on the system to

tune the platform for the application.

Springer



282 C. Araujo et al.

This simulation performance allows the designers to have a good feedback of the appli-

cation in a reasonable amount of time, supporting a more effective design space exploration.

9 Conclusions

This paper presents a processor centric approach for the modeling and simulation of multi-

processor platforms. The ArchC ADL has been extended to support the modeling of multi-

processor systems at a very high abstraction level. The results shown that the modeling effort

is minimum, since processors and platforms are modelled in an unified environment.

Besides modeling support our approach allows the automatic generation of platform sim-

ulators in SystemC at distinct abstraction levels. The great advantage of this feature is that the

designer does not need to make any change on the platform description to obtain simulators.

It hides all the simulation scheme details from the designer by just issuing command line op-

tions or clicking the corresponding buttons in a graphical framework. Simulation results have

also shown the impact of RTL simulation performance, and on finding errors in the platform.

Our framework includes also a mechanism for generating platform simulators, which

are able to run concurrent processes communicating through channels. For this purpose, a

mechanism has been developed which supports the semi-automatic synthesis of system-level

synchronization and communication into the multiprocessor target platform. One advantage

of our approach is its ability to explore distinct platforms with a minor effort. Embedded C

code and SystemC modules are generated to implement communication and synchronization

among processes running on distinct processors.

In order to improve the functionality of the framework we have work going on to

provide component models like buses with analysis support like performance and power

consumption. In the case of performance the idea is to obtain detailed information regarding

contention and transfer times. We are also including performance and power cache analysis

support that will give the system designer more information during the design space

exploration of the platforms.

References

1. AMBA specification Rev(2.0).

2. Abdi, S., D. Shin, and D. Gajski. Automatic Communication Refinement for System Level Design. In

Proceedings of the 40th conference on Design automation, ACM Press, 2003, pp. 300–305.

3. Araujo, C. and E. Barros. Communication Mapping in Multiprocessor Platforms. In Proceedings of the
IFIP International Conference on Very Large Scale Integration of System-on-Chip, 2005.

4. Araujo, C., E. Barros, R. Azevedo, and G. Araujo. Processor Centric Specification and Modeling of

MPSoCs Using ArchC. In Proceedings of the Forum on Specification & Design Languages FDL’05,

2005.

5. Azevedo, R., S. Rigo, M. Bartholomeu, G. Araujo, C. Araujo, and E. Barros. The ArchC Architecture

Description Language. International Journal of Parallel Programming, 33(5):453–484, 2005.

6. Balarin, F., Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli. Metropolis:

An Integrated Electronic System Design Environment. Computer, 36(4):45–52, 2003.

7. Brunel, J.-Y., W.M. Kruijtzer, H.J.H.N. Kenter, F. PÈtrot, L. Pasquier, E.A. de Kock, and W.J.M. Smits.

COSY Communication IP’s. In Proceedings of the 37th Conference on Design Automation, ACM Press,

2000, pp 406–409.

8. Cesario, W., A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A.A. Jerraya,

and M. Diaz-Nava. Component-based Design Approach for Multicore SoCs. In Proceedings of the 39th
Conference on Design Automation, ACM Press, 2002, pp. 789–794.

9. Cesário, WO., L. Gauthier, D. Lyonnard, G. Nicolescu, and A.A. Jerraya. Object-based Hardware/Software

Component Interconnection Model for Interface design in System-on-a-Chip Circuits. Journal of Systems
and Software, 70(3):229–244, 2004.

Springer



Platform designer: An approach for modeling multiprocessor platforms based on SystemC 283

10. Coware company. available at http://www.coware.com, February 2006.

11. de Kock, E.A., W.J.M. Smits, P.van der. Wolf, J.-Y. Brunel, W.M. Kruijtzer, P. Lieverse, KA. Vissers,

and G. Essink. YAPI: application modeling for Signal Processing Systems. In Proceedings of the 37th
Conference on Design Automation, ACM Press 2000, pp. 402–405.

12. Dziri, M.-A., WO. Cesário, F.R. Wagner, and A.A. Jerraya. Unified Component Integration Flow for

Multi-Processor SoC Design and Validation. In Proceedings of DATE, 2004, pp 1132–1137.

13. Gajski, D. et al. System-on-Chip Environment (SCE) Tutorial. Technical report, Center for Embedded

Computer Systems Information and Computer Science, University of California, Irvine, September 2002.

14. Guthaus, M.R., J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown. MiBench: A Free,

Commercially Representative Embedded Benchmark Suite. In Proceedings of the IEEE 4th Annual Work-
shop on Workload Characterization, December 2001.

15. Halambi, A., P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. EXPRESSION: a Language for

Architecture Exploration Through Compiler/Simulator Retargetability. In Proceedings of the Conference
on Design, Automation and Test in Europe, ACM Press, 1999, page 100.

16. Hoffmann, A., T. Kogel, A. Noah, G. Braun, O. Schliebush, O. Wahlen, A. Wieferink, and H. Meyer.

A Novel Methodology for the Design of Application Specific Instruction Set Processors (ASIP) Using a

Machine Description Language. In IEEE Transactions on Computer-Aided-Design, November 2001, pp.

1338–1354.

17. http://www.archc.org. The ArchC Resource Center.

18. http://www.eclipse.org. Eclipse Open Source Community.

19. http://www.tensilica.com. Tensilica Company.

20. Kahn, G. The Semantics of a Simple Language for Parallel Programming. In Proceedings of the IFIP
Congress 74, North Holland Publishing Co., 1974, pp. 471–475.

21. Lee, C., M. Potkonjak, and WH. Mangione-Smith. MediaBench: A Tool for Evaluating and Synthesizing

Multimedia and Communications Systems. In Proceedings of the 30th Annual International Symposium
on Microarchitecture(Micro-30), December 1997.

22. Lieverse, P., T. Stefanov, PV. Wolf, and Ed. Deprettere. System Level Design with Spade: an M-JPEG

Case Study. In Proceedings of the 2001 IEEE/ACM International Conference on Computer-aided Design,

IEEE Press, 2001, pp. 31–38.

23. Eugenia Gabriela Nuta Nicolescu. SpÈcification et validation des systËmes hÈtÈrogËnes embarquÈs.

PhD thesis, TIMA Laboratory, November 2002.

24. Paulin, P.G., C. Pilkington, and E. Bensoudane. StepNP: A System-Level Exploration Platform for Net-

work Processors. IEEE Design & Test of Computers, 2002, pp. 17–26.

25. Paulin, P.G., C. Pilkington, E. Bensoudane, M. Langevin, and D. Lyonnard. Application of a Multi-

Processor SoC Platform to High-Speed Packet Forwarding. In Proceedings of DATE, pp. 58–63, 2004.

26. Shin, D., S. Abdi, and D. Gajski. Automatic Generation of Bus Functional Models from Transaction Level

Models. In Proceedings of ASP-DAC, 2004, pp. 756–758.

27. SPARC International, Inc. The SPARC Architecture Manual - Revision SAV080SI9308.

28. The ArchC Team. The ArchC Architecture Description Language Reference Manual. Computer Systems

Laboratory (LSC) - Institute of Computing, University of Campinas, http://www.archc.org, 2006.

29. Vahid, F., and T. Givargis. Platform Tuning for Embedded Systems Design. IEEE Computer, 34(3):112 –

114, 2001.

30. Wieferink, A., T. Kogel, R. Leupers, G. Ascheid, H. Meyr, G. Braun, and A. Nohl. A System Level

Processor/Communication Co-Exploration Methodology for Multi-Processor System-on-Chip Platform.

In Proceedings of DATE, 2004, pp. 1256–1263.

31. Wolf, W. The Future of Multiprocessor Systems-on-Chips. In Proceedings of the 41st Annual Conference
on Design Automation, ACM Press, New York, NY, USA, 2004, pp. 681–685.

Springer


