
Global Array Reference Allocation

GUIDO ARAUJO and GUILHERME OTTONI
IC-UNICAMP
and
MARCELO CINTRA
Mindspeed Technologies Inc.

Embedded systems executing specialized programs have been increasingly responsible for a large
share of the computer systems manufactured every year. This trend has increased the demand
for processors that can guarantee high-performance under stringent cost, power, and code size
constraints. Indirect addressing is by far the most used addressing mode in programs running on
these systems, since it enables the design of small and faster instructions. This paper proposes a
solution to the problem of allocating registers to array references using auto-increment addressing
modes. It extends previous work in the area by enabling efficient allocation in the presence of
control-flow statements. The solution is based on an algorithm that merges address registers’
live ranges pairwise. An optimizing DSP compiler, from Mindspeed Technologies Inc., is used to
validate this idea. Experimental results reveal a substantial improvement in code performance,
when comparing to a combination of local auto-increment detection and priority-based register
coloring.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
code generation; optimization

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Address registers, auto-increment addressing modes, DSPs,
register allocation

1. INTRODUCTION

Embedded programs, like those used in audio/video processing and telecom-
munications, are playing a crescent role in computing. Due to its performance
and code size constraints, many embedded programs are written in assembly,
and run on specialized processors and/or commercial CISC machines. The in-
crease in the size of embedded applications has put a lot of pressure toward the
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development of optimizing compilers for these architectures. Processors that
run embedded programs range from commercial CISC machines (e.g., Motorola
68000) to specialized digital signal processors (DSPs) (e.g., ADSP 2100 [Analog
Devices 1995]), and encompass a considerable share of the processors produced
every year.

Address computation takes a large fraction of the execution time for
most programs. Addressing can account for over 50% of all program bits
and one out of every six instructions for a typical general-purpose program
[Hitchcock III 1986]. In order to speed up address computation, most embed-
ded processors offer specialized addressing modes. A typical example is the
auto-increment (decrement) mode,1 which enables the encoding of very short
instructions. All commercial DSPs and most CISC processors’ instruction set
architectures (ISAs) have auto-increment (decrement) modes.

Register allocation is a well-studied problem in compilers. Many of the first
problems in code generation involved finding good algorithms for register allo-
cation [Bruno and Sethi 1976; Sethi 1975; Aho et al. 1977a]. Code generation
for expression trees has many O(n) solutions, where n is the number of vertices
in the tree. These algorithms are used in code generation for stack machines
[Bruno and Sethi 1975], register machines [Sethi and Ullman 1970; Aho and
Johnson 1976; Appel and Supowit 1987] and machines with specialized instruc-
tions [Aho et al. 1977b]. Global register allocation is an important problem in
code generation that has been extensively studied [Chaitin 1982; Briggs et al.
1989; Chow and Hennessy 1990; Gupta et al. 1994]. Other researchers have
considered the interaction of register allocation and scheduling in code gen-
eration for RISC machines [Goodman and Hsu 1988; Bradlee et al. 1991], and
interprocedural register allocation [Callahan and Koblenz 1991]. The allocation
of local variables to the stack-frame, using auto-increment (decrement) mode,
has been studied in Bartley [1992], Liao et al. [1995], Rao and Pande [1999],
Leupers and David [1998], and Eckstein and Krall [1999].

Horwitz et al. [1996] proposed the first algorithm for optimal allocation of
address registers in straight line code. Global register allocation for array ref-
erences has been studied before by Bodik and Gupta [1996] and Callahan et al.
[1990]. In Bodik and Gupta [1996] and Callahan et al. [1990] array elements
are allocated to general-purpose registers. As the loop iteration progresses, ref-
erences are moved among registers in a pipelined fashion. As a result, only a
single load instruction is required per iteration, to load the register at the en-
trance of the register sequence, and this can be done by a single address register.
Unfortunately, most DSPs are highly constrained architectures containing very
few specialized registers, making the just described approach impractical for
these architectures.

Local reference allocation (LRA) is the problem of allocating address registers
to array references in a basic block such that the number of address registers
and instructions required to update them are minimized. LRA has been studied
before in Araujo et al. [1996], Gebotys [1997], and Leupers et al. [1998]. These

1In this paper we use postincrement only. A generalization to include preincrement is fairly
straightforward.
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(1) for (i = 0; i < N-2; i++) { p = &a[1];
(2) if (i % 2) { for (i = 0; i < N-2; i++) {
(3) avg += a[i+1] << 2; if (i % 2) {
(4) a[i+2] = avg * 3; avg += *p++ << 2;
(5) } *p-- = avg * 3;
(6) if (avg < error) }
(7) avg -= a[i+1] - error/2; if (avg < error)
(8) else avg -= *p++ - error/2;
(9) avg -= a[i+2] - error; else {
(10) } p += 1;
(11) avg -= *p - error;
(12) }
(13) }

(a) (b)

Fig. 1. (a) Code fragment; (b) modified code that enables the allocation of one register to all
references.

are efficient graph-based solutions, when references are restricted to basic block
boundaries. In this paper, we propose a solution to the global form of this prob-
lem, when array references are spread across different basic blocks, a problem
we call global reference allocation (GRA).

The basic concepts required to understand LRA and GRA are described in
Section 3. In Section 4 we give a short description of the existing solutions
to LRA. This is followed by a general description (Section 5) of our algorithm
to GRA, named live range growth (LRG). The LRG algorithm is based on an
operator that merges register live ranges pairwise. The merge operator is de-
scribed in Section 6, and its formulation and complexity analysis in Section 7.
Section 8 proposes a heuristic algorithm for GRA, and Section 9 evaluates the
performance of the algorithm, using a real-world optimizing DSP compiler from
Mindspeed Technologies Inc. Section 10 summarizes the main results and gives
future directions.

2. PROBLEM DEFINITION

GRA is the problem of allocating address registers (ar’s) to array references
such that the number of simultaneously live address registers is kept below
the maximum number of address registers in the processor, and the number of
new instructions required to do that is minimized. In many compilers, this is
done by assigning address registers to similar references in the loop. This usu-
ally results in very efficient code, when traditional optimizations like induction
variable elimination and loop invariant removal [Aho et al. 1986; Muchnick
1997] are in place. Nevertheless, assigning the same address register to dif-
ferent instances of the same reference does not always result in the best code.
For example, consider the code fragment of Figure 1(a). If a register is assigned
to each distinct reference a[i + 1], a[i + 2], two address registers are required
for the loop. Now, assume that only one address register is available in the
processor. If we rewrite the code from Figure 1(a) using a single pointer p, as
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Fig. 2. The architecture MAC unit.

shown in Figure 1(b), the resulting loop uses only one address register that is
allocated to p. The cost of this approach is the cost of a pointer update instruc-
tion (p += 1) introduced in one of the loop control paths, which is considerably
smaller than the cost of spilling/reloading one register. The C code fragment of
Figure 1(b) is a source level model of the intermediate representation resulting
when optimal GRA allocation is performed on the code of Figure 1(a).

The target architecture used to validate the GRA approach described in this
paper is an in-house DSP core from Mindspeed Technologies Inc. A production
compiler for this processor has been used to implement our solution for GRA.
Only some aspects of the architecture are described here, namely those that
are related to the GRA problem. The target architecture is a typical DSP archi-
tecture featuring two MAC units (Figure 2) and an address generation unit (AGU)
that performs memory address calculation in parallel with the other units. The
AGU enables auto-increment operations on eight memory addressing registers,
thus reducing the number of instructions required to access data in contiguous
memory positions. Four modify registers (mr’s) are available that can be used
together with the addressing registers for memory access. From those, two
mr’s are used to handle stack and global variable addressing, one is assigned
to a specialized processor feature, and the last mr stores −1 so as to enable
auto-decrement addressing. Each MAC unit has two accumulators, and a typi-
cal instruction in the processor ISA takes one operand from on-chip memory2

and the other from one of the accumulators. For example, instruction add acc0,
(*ar1++mr3), accumulates into acc0 the data pointed to by the sum of address

2For some instructions, memory access is performed through pipeline operand registers X and Y.
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register ar1 plus modify register mr3. The just described architecture is typical
of most DSP architectures [Araujo 1997].

3. BASIC CONCEPTS

This section defines a set of basic facts that are required to formulate the GRA
problem and to study its solutions. It defines the following concepts: (a) indexing
distance, which is used to measure the cost of assigning two references to the
same address registers; (b) live range, which is basically a set of references in
the program that share the same address register.

First of all, assume for the rest of this paper that the order of the array
references, with respect to each other, is known and that the array data type
is a memory word (a typical characteristic of embedded programs). Moreover,
references are kept atomic in the compiler intermediate representation, and
array subscript expressions are not considered for common subexpression elim-
ination (CSE).

A central issue in GRA is to bound the allocation of address registers to the
number of address registers in the target processor. In this case sometimes
it is desirable that two references share the same register. This is done by
inserting an instruction between the references or by using the auto-increment
(decrement) mode. The possibility of using auto-increment (decrement) can be
measured by the indexing distance.

Definition 3.1. Let a and b be array references and s the increment of the
loop containing these references. Let index(a) be a function that returns the
subscript expression of reference a. The indexing distance between a and b is
the positive integer

d (a, b) =
{
|index(b)− index(a)|, if a < b,
|index(b)− index(a)+ s|, if a > b,

where a < b (a > b) if a (b) precedes b (a) in the schedule order.

Example 3.1. Consider, for example, the array references from lines (9) and
(3) of Figure 1(a) (i.e., a[i+ 2] and a[i+ 1]), where s = 1. The indexing distance
d (a[i + 1], a[i + 2]) = |(i + 1)− (i + 2)+ 1| = 0 ≤ 1. Since the indexing distance
is smaller/equal to 1, no update instruction is needed to update the register
allocated to the address register assigned to a[i+2] such that it ends up pointing
to a[i + 1] in the next iteration.

Definition 3.1 for indexing distance can only be applied to unidimensional
arrays. When nested loops or multidimensional arrays are present, the index-
ing distance should take into consideration the layout of the array in memory
and the size of the dimensions. Similarly as in the unidimensional case, only
references for which the index function at each dimension is an affine function
must be considered.

In the following, assume that the size of each array element is a memory
word, that arrays are stored in row major, and that r[i1] · · · [in] an n-dimensional
array reference within a loop. Each subscript index of reference r can be rep-
resented by a triple ik = (ak , jk , bk), ak and bk are integers, and jk is an
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(1) for (i=0;i<N;i++){
(2) for (j=0;j<N;j++){
(3) for (k=0;k<N;k++)
(4) c[i][j] += a[i][k]*b[k][j];
(5) }
(6) }

Fig. 3. Matrix multiplication algorithm.

induction variable. Hence, reference r can be represented by a set of triples
{(a1, j1, b1), . . . , (an, jn, bn)}.

Let j be an induction variable of a given loop L with step s = 1. Assume
that the subscript index expression ik is a linear function of induction variable
j , that is, ik = (ak , j , bk). If k = n, then consecutive iterations of L result
in a contiguous memory access pattern, where any two consecutive memory
references to elements of r are in adjacent memory positions. In this case, auto-
increment mode can be used to update the address register pointing to r. On the
other hand, if k 6= n then any consecutive references to r result in a sequence of
accesses to memory positions that are separated from each other by an amount
that depends on the size of the array dimensions that are greater than k. We
call this amount the dimensional shift (Dk) of dimension k, and compute it
(below) as the product of the size of all dimensions of r that are greater than k.

Dk =
{

1, if k = n,∏n
j=k+1 size( j ), otherwise.

where size( j ) is the size of dimension j . Based on the dimensional shift concept,
we can now generalize the indexing distance for n-dimensional array references.

Definition 3.2. Let r1 and r2 be two n-dimensional array references rep-
resented, respectively, by the set of triples {(a1, j1, b1), . . . , (an, jn, bn)} and
{(a1, j1, c1), . . . , (an, jn, cn)}. The indexing distance between r1 and r2 is the in-
teger quantity:

d (r1, r2) =
{
|∑n

k=1(ck − bk) ∗ Dk|, if r1 < r2,

|∑n
k=1(ck − bk + ak ∗ s) ∗ Dk|, if r1 > r2.

Example 3.2. Consider, for example, the algorithm of Figure 3, which com-
putes the product of two matrices a and b and stores the result into matrix
c. Assume that all matrices are bidimensional arrays where size(d ) = 50, for
any dimension d ≤ 2. The subscript indices of all array references in Figure 3
are linear functions of the induction variables i, j , or k. Consider references
a[i][k] and b[k][j] in line (4) of the inner loop. For the sake of simplicity,
call these references by the name of the arrays they refer to, that is, a and b.
Assume that register ar1 (ar2) has been allocated to reference a (b). The in-
dexing distance between reference a, in the current iteration, and the same
reference in the next loop iteration is, according to Definition 3.2, d (a, a) = 1.
Hence, auto-increment mode can be used to update register ar1 in the current
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Fig. 4. (a) Two live ranges R and S; (b) a single live range is formed after joining R 1 S.

iteration such that it points to reference a in the next iteration. On the other
hand, the indexing distance between b in the current iteration and b in the next
iteration is d (b, b)= |1− 1+ 0| ∗1+ |1− 1+ 1| ∗50= 50. Since the indexing dis-
tance between two consecutive references to b is greater than 1, auto-increment
mode cannot be used for ar2. Therefore, an update instruction ar2 += 50 is re-
quired, at the end of the inner loop, to redirect ar2 such that it points to b[k][ j ]
in the next iteration.

Definition 3.3. A live range L = {r1, r2, . . . , rn} is a set of array references
that share the same address register.

The concept of live range used in this paper is a straightforward extension of
idea of variable liveness adopted in the compiler literature [Aho et al. 1986]. The
set of array references of a program can be divided into a number of subsets,
each of them defining a live range. For example, in Figure 4(a) references are
divided into live ranges R and S. In our notation for live range, little squares
represent array references, and squares with the same color are in the same
range. Moreover, an edge between two references of a live range indicates that
the references are glued together through auto-increment mode or an update
instruction. In Figure 4(a), symbol “++” (“−−”) following a reference assigns a
postincrement (decrement) mode to that reference. Notice that a live range can
include many references across distinct basic blocks. The problem of dividing
references in a basic block into ranges is known as the local reference allocation
(LRA) problem and is discussed in Section 4 below.

4. LOCAL REFERENCE ALLOCATION

The goal of LRA is to allocate an address register to each array reference
in a basic block, by dividing them into live ranges and assigning an address
register to each range. Therefore, the final number of ranges should not exceed
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the total number of address registers of the processor. Moreover, the number of
instructions required to redirect registers through references should be mini-
mum. Solutions to the LRA have been studied before in the literature.

Araujo et al. [1996] proposed an approach to the LRA problem based on the
solution of a bipartite matching problem. In Araujo et al. [1996], references are
associated to vertices of a graph, called the indexing graph (IG). There exists an
edge in the IG between two references, if auto-increment/decrement can be used
to redirect the address register from one reference to another. The LRA problem
is then solved by determining the minimum disjoint path covering of the IG,
using a bipartite matching algorithm [Boesch and Gimpel 1977]. Each path in
the resulting cover corresponds to a live range that is assigned an addressing
register. Araujo’s approach presents a drawback when the number of ranges
is larger than the number of address registers available in the processor. The
ranges are merged pairwise, using a heuristic, until its number is reduced to
the number of available address registers.

A way to tackle this drawback is to bound the number of live ranges in
the block to the number of address registers in the processor. Gebotys [1997]
proposed a formulation that does exactly this. Her technique is based on the
solution of a minimum network-flow circulation problem [Tarjan 1983]. Every
array reference in the basic block is associated to a vertex in the network, and
there exists an edge from any two references if one follows the other in the
schedule order. Every edge is assigned an unitary edge capacity and a cost. The
cost is zero (one) if no (one) instruction is needed to redirect the address register
pointing to the reference at the source of the edge, such that it points to the
reference at its destination. A circulation edge3 is added to the network graph
with a capacity equal to the number of address registers available in the pro-
cessor. The goal of Gebotys’s algorithm is to find the maximum circulation flow
that minimizes the number of update instructions (i.e., flow cost). A live range
in this formulation is a network path (from source to drain) formed exclusively
by edges for which the flow is nonzero. The drawback of this technique stems
from the fact that it seeks to determine the minimum cost of the maximum flow
(number of allocated registers), thus increasing register pressure.

The approaches to the LRA problem proposed above do not address the allo-
cation of address registers across loop iterations. In both cases, the allocation
across iterations is considered only after the covering is performed, and works
as follows. For each live range resulting from the cover, take the head and tail
of each range, and check if auto-increment/decrement is enough to redirect the
reference at the tail (in the current iteration) to the reference at the head (in
the next iteration). If this is not possible an update instruction is required to
redirect the address register from tail to head. After tail and head of each range
are connected (through an auto-increment/decrement mode or update instruc-
tion), the resulting range is a cycle and an address register is assigned to it.
The drawback of this strategy is that cycles are considered after path covering,
and there are chances that the final ranges require more update instructions
than the optimal solution [Araujo 1997].

3A circulation edge in a network graph is an edge from the destination to the source vertex.
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(1) procedure LRG (R, nars)
(2) while |R| > nars do
(3) mincost←+∞
(4) for each range R ∈ R do
(5) for each range S ∈ R, S 6= R do
(6) if cost1(R,S) < mincost then
(7) mincost← cost1(R,S)
(8) minpair← {R, S}
(9) R← (R - minpair) ∪ (R 1 S)

Fig. 5. LRG algorithm.

Basu et al. [1999] proposed a solution to the LRA problem that addresses
this issue. In Basu et al.’s work, a branch-and-bound algorithm is used to cover
the references using cycles in the graph, while a merge operator keeps the
number of paths limited to the maximum number of address registers. The
path covering approach from Araujo et al. [1996] is used as a lower bound and
a heuristic algorithm as an upper bound to determine the minimum number of
address registers required to achieve the optimal cycle covering. Basu et al.’s
approach is the most complete optimal solution known to the LRA problem.

As described above, the LRA problem has been extensively studied. On the
other hand, not much research work has been done toward finding solutions
for the allocation of address registers for a whole procedure (GRA). Good ad-
dress register allocation for basic blocks can improve the performance of pro-
grams, but it is not enough due to the following reasons. First, the majority
of the real-world programs have loop bodies with more than one basic block.
The separate allocation of address registers to individual blocks decreases the
possibility of register sharing among blocks, considerably increasing register
pressure and spilling. Second, even for loop bodies that contain only a single
block, local allocation does not handle the allocation of registers across different
loop nesting levels.

5. GLOBAL REFERENCE ALLOCATION

To solve the GRA problem we developed a technique that repeatedly merges
pairs of live ranges R and S, such that all references in the new range (called
R 1 S) are allocated to the same register. The algorithm starts by partitioning
all references across a set of initial live ranges. The initial set of ranges can be
formed in many different ways. In this paper we studied two cases: (a) when
each individual reference is assigned a separate range; and (b) when the initial
ranges are the solution of solving the LRA problem to all loop blocks. In this
case any of the algorithms in Section 4 could be applied.

Ranges are merged pairwise until the number is smaller than or equal to the
number of address registers available in the processor. We call this technique
live range growth (LRG). The cost of merging two ranges R and S (cost1(R, S))
is the total number of cycles of the update instructions required by the merge.
The pseudo-code for the LRG algorithm is shown in Figure 5.
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In LRG, inner loops are treated first, hierarchically followed by outer loops.
The algorithm is greedy and its runtime complexity is O(n2), where n is the
number of references in the loop.

Despite its complexity, the experimental results (Section 9) reveal that LRG
is fast (no substantial increase in runtime was detected) and considerably
improves address register allocation. For example, after ranges R and S in
Figure 4(a) are merged a single range R 1 S results, shown in Figure 4(b).

In order to enable references to share the same address registers, we have to
convert them to a new representation that satisfies the following requirement:
any reference b should be reached by only one reference a, given that we want
to compute the indexing distance d (a, b) at compile time. This allows us to
decide, at compile time, between using auto-increment (decrement) mode for a,
or inserting an update instruction on the path from a to b. We have realized
that this requirement can be satisfied if the references in the CFG are in static
single assignment (SSA) Form [Cytron et al. 1989]. We call this variation of
SSA a single reference form (SRF) and describe it below.

5.1 The Single Reference Form

Let G be some program control-flow graph (CFG) and R the set of array ref-
erences in G. G is in SRF, with respect to R, if each reference is reached by
a single reference. Translating a CFG to SRF can be done using the so-called
φ-functions [Cytron et al. 1989] at the join nodes of G that are relevant to R.
In order to merge ranges that converge to the same block B, we first insert, at
the entry of B, a dumb φ-function φ(a, a, . . . , a), with the number of argument
positions equal to the number of control-flow predecessors and successors4 of
B. This function is assigned to a new reference w, resulting in the φ-equation
w = φ(a, a, . . . , a). The goal of the φ-equations is to sort out which references
reach a given block B (see Figure 6). Notice that the result of a φ-equation
(i.e., w) is a reference generated by an update instruction, or by the auto-
increment (decrement) mode assigned to any reference that is an argument
of the φ-function. In order to simplify the notation, from now on, we call refer-
ences in the original program real references and references that are the result
of φ-equations virtual references.5

Similarly as in the case of SSA translation, φ-equations are required only
at certain basic blocks. These blocks are given by the iterated dominance fron-
tier [Cytron et al. 1989] of the set that contains all references. Our work uses
the algorithm for iterated dominance frontier described in Cytron et al. [1989].
For the sake of space, we do not describe here any further details on how to
convert a program into its SSA form. The interested reader should look that up
Cytron et al. [1989] or to modern compiler optimization books [Muchnick 1997].

The next step in our approach is to substitute φ-equations for update in-
structions whenever this is required. In order to do that, we need to compute
two sets: (a) the set of references that reach φ-equations; and (b) the set of

4Successors are not considered in the SSA form.
5Virtual references are only a solution artifact and do not perform any access to memory.
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Fig. 6. CFG fragment after φ-instruction insertion and reference analysis.

references that are reached by the result of φ-equations. We call the technique
used to compute these sets reference analysis, and base it on dataflow analysis
of the program CFG [Aho et al. 1986; Muchnick 1997].

5.2 Reference Analysis

The data item used during reference analysis is the array reference. We say that
statement s generates reference a if a is used in s, and a is a reference from the
live ranges R or S that we want to merge (i.e., a ∈ R ∪S). Statement s kills a if
it uses some other reference b ∈ R∪S and b 6= a. Based on this notation, we can
determine, for each basic block B, the following dataflow sets: (a) r gen[B], the
set of references generated in B; (b) r kill[B], the set of references killed in B.
Reference analysis is the problem of computing the array references from R ∪ S
that reach any given statement. It can be formulated as a reaching definitions
problem for which there are well-known solutions [Aho et al. 1986; Muchnick
1997].

After reference analysis is performed we have, at each program point, the
set of references reachable at that point. We use this to compute, for each state-
ment s, the following sets: (a) UDs, the ud-chain of the references that reach
s; (b) DUs, the set of references that use a reference defined at s. When s is
a φ-equation, references in UDs are used to rename the φ-function arguments
to φ(a1, a2, . . . , an, b1, . . . , bj , . . . , bm), ai ∈ UDs and bj ∈ DUs. For the sake of
simplicity, we represent this φ-function as φ(UDs, DUs). For example, for block
B3 in Figure 6 UD3 = {a[i + 2], w1} and DU3 = {a[i + 1], a[i + 2]}.
ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 2, April 2002.
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Example 5.1. Consider, for example, the CFG fragment shown in Figure 6,
after φ-equations are inserted into blocks B1, B3, and B6. The UD and DU
sets for all basic blocks that perform array references are shown in Figure 6.
We assume here that the program begins (ends) before (after) block B1 (B6).
Notice that, if φ-equations had not been inserted, the instruction associated
to reference a[i + 1] in B2 would be reached (across one loop iteration) by two
references, that is, UD2 = {a[i+1], a[i+2]}. In this case, it would not be possible
to determine, at compile time, which of the these two references reach a[i + 1],
and hence if auto-increment mode could be used by their instructions to point to
a[i+1]. After φ-equations are inserted, the ud-chain at B2 becomes UD2 = {w1},
only one reference reaches a[i+ 1], and thus the decision can be made once the
value for w1 is computed.

6. THE MERGE OPERATOR (R 1 S)

After a program is in SRF, any loop basic block to which array references con-
verge will have a φ-equation, including the header and the tail of the loop. The
LRG algorithm is a greedy algorithm that takes the initial set of references
and merges them pairwise. At each step of the algorithm two live ranges are
merged. The cost cost1(R, S) of merging any two live ranges R and S into a
single range R 1 S is used to determine which pair of ranges to merge. The
pair of ranges that leads to the smallest value of cost1 is always selected for
merge. The algorithm ends when the number of live ranges is smaller/equal to
the number of address registers in the processor.

Before merging two ranges R and S, we have to estimate the cost of the
update instructions required to do that, so as to decide if the cost of this merge
is smaller than the current minimum merge cost. Consider, for example, two
live ranges R and S that join at basic block B, as shown in Figure 7(a). By
definition, after the program is in SRF, each reference b ∈ R ∪S has associated
to it a set UD that contains a single reference a also from R ∪S. During merge,
a and b are glued together by using auto-increment (decrement) mode at a
or by inserting an update instruction between a and b. The cost of an update
instruction is measured by the number of cycles it takes to execute, which we
assume to be 1. Let DUa be the def-use chain of the references that are reachable
from a. The cost of adding an update instruction from reference a to b ∈ DUa
can be defined as

cost(a, b) =


0, if |d (a, b)| ≤ 1 and a is real, or

if |d (a, b)| = 0 and a is virtual,

1, otherwise.

(1)

The first condition for the zero cost, in Equation (1), aims at detecting the
possibility of assigning an auto-increment (decrement) to a real reference a. The
second condition for the zero cost measures if the virtual reference (resulting
from a φ-equation) is equal to the reference b that it reaches. In all other cases,
an update instruction is required and the cost is 1.
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Fig. 7. Examples of update instruction insertion.
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Let Pred(B) (Succ(B)) be the set of predecessors (successors) of block B that
contains φ-equation sφ , and ar the address register assigned to R 1 S. Consider
all statements sφ that have at least one reference from R and S as arguments.
Notice that the other arguments of φ are irrelevant given that we want to merge
only ranges R and S. After reference analysis, any sφ has associated to it sets
UDφ and DUφ , with elements ai ∈ UDφ and bj ∈ DUφ . The value of w depends
on how distant the elements in UDφ and DUφ are. We want to select a reference
w that reduces the number of update instructions required to merge all ai to
all bj . This can be done using the following algorithm that is illustrated in
Figure 7(b)–(e).

(1) If the elements b ∈ DUφ are the same, but elements of UDφ are different.
In this case, w is the array reference that minimizes the cost

∑|UDφ |
i=1

cost(ai, w)+ cost(w, b). Remove sφ and insert into B an update instruction
ar + =d (w, b), if cost(w, b)= 1. Insert, at the exit of the block Pi ∈
Pred(B) that contains ai, an update instruction ar+ = d (ai, w), when-
ever cost(ai, w)= 1; otherwise, use the adequate auto-increment (decre-
ment) mode for ai.

Example 6.1. Consider, for example, the live ranges in Figure 7(b). No-
tice that w = a[i−1] and all references reachable from sφ are the same, that
is, bj = a[i + 2], ∀bj ∈ DUφ . Since cost(a[i − 1], a[i + 2]) = 1 we substitute
sφ by an instruction ar+ = 3 that redirects ar from w = a[i − 1] to a[i + 2].
Reference a[i−2] is assigned auto-increment mode, and thus it is rewritten
to a[i − 1] for the future steps of the algorithm.

(2) If the elements a ∈ UDφ are the same, but elements of DUφ are different.
In this case w is the array reference that minimizes the cost cost(a, w) +∑|DUφ |

j=1 cost(w, bj ). Remove sφ and insert into B update instruction ar+ =
d (ai, w), if cost(ai, w) = 1; otherwise use the adequate auto-increment
(decrement) mode for ai. Insert, at the entry of block Sj ∈ Succ(B) that
contains bj an update instruction ar+ = d (w, bj ), if cost(w, bj ) = 1.

Example 6.2. Consider, for example, the live ranges in Figure 7(c). Here
w = a[i − 1] and all references that reach sφ are the same, that is, ai =
a[i + 2], ∀ai ∈ UDφ . Since cost(a[i + 2], a[i − 1]) = 1, we substitute sφ by
an instruction ar+ = −3 that redirects ar from a[i + 2] to w = a[i − 1].
Moreover, since cost(a[i − 1], a[i − 2]) = 1, we insert ar+ = −1 on the path
from w = a[i − 1] to a[i − 2].

(3) If the elements of DUφ (UDφ) are the same.
In this case, w is the reference that minimizes cost(a, w) + cost(w, b).
Remove sφ and insert update instructions or use auto-increment (decre-
ment) mode according to steps (1) and (2) above.

Example 6.3. Consider, for example, the live ranges in Figure 7(d).
Notice that w = a[i + 1] and all references in UDφ (DUφ) are the same,
that is, a[i − 1] (a[i + 1]). Since cost(a[i + 1], a[i + 1]) = 0 no update in-
structions are required from w = a[i + 1] to a[i + 1]. On the other hand,
cost(a[i − 1], a[i + 1]) = 1 and thus an instruction ar+ = 2 is required in
block B.
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(4) If the elements in UDφ (DUφ) are not the same.
In this case, w is the array reference that minimizes

∑|UDφ |
i=1 cost(ai, w) +∑|DUφ |

j=1 cost(w, bj ). Remove sφ and insert, at the exit of the block Pi ∈ Pred(B)
that contains ai, an update instruction ar+ = d (ai, w), if cost(ai, w) = 1;
otherwise, use auto-increment (decrement) mode for ai. Insert an update
instruction ar+ = d (w, bj ) at the entry of Sj ∈ Succ(B), if cost(w, bj ) = 1.

Example 6.4. Consider, for example, the ranges in Figure 7(e). In this
case w = a[i−1], and the elements of sets UDφ and DUφ are distinct within
each set. Since cost(a[i + 2], a[i − 1]) = 1 we insert at the end of the block
that contains a[i + 2] an update instruction ar+ = −3 to redirect ar from
a[i + 2] to w = a[i − 1]. Similarly, instruction ar+ = 3 is inserted at the
entry of the block that contains a[i + 2].

7. THE MINIMUM COST R 1 S PROBLEM

Given that the merge operation is central to the LRG algorithm, it is important
to structure the problem and analyze its computational complexity. Assume
that during some intermediate step in the LRG algorithm two ranges R and
S are considered for merging. Consider, for the following analysis, only those
references that are in R ∪ S. The set of φ-equations associated to these refer-
ences forms a system of equation that evaluates according to the rules discussed
in Section 6. The unknown variables in this system are virtual references wk .
These equations have circular dependencies, caused basically by the following
reasons: (a) they originate from a loop; (b) each φ-function depends on its sets
UDφ and DUφ . Therefore, any optimal solution for variables wk cannot always
be determined exactly. Consider, for example, the CFG of Figure 8 corresponding
to the loop in Figure 1(a), after φ-equations are inserted and reference analysis
is performed. Three φ-equations result in blocks B1, B3, and B6, namely:

s1φ : w1 = φ(w3, a[i + 1], w2), (2)
s2φ : w2 = φ(a[i + 2], w1, a[i + 1], a[i + 2]), (3)
s3φ : w3 = φ(a[i + 1], a[i + 2], w1). (4)

We call the problem of solving the set of equations above such that the minimum
number of update instructions is required the minimum merge problem (MMP).
MMP can be formulated as a graph theoretical problem and proved to be NP-
hard. The complexity analysis of MMP will not be discussed further, but the
details can be found in Ottoni et al. [2001]. In Ottoni et al. [2001] we proved
that the merge operation (i.e., finding the merge of minimal cost) is NP-hard
through a reduction from the minimal vertex-covering problem. Moreover, we
showed that for some special cases the merge operation admits an optimal O(n)
solution based on a dynamic programming algorithm.

8. IMPLEMENTATION OF R 1 S

As the merge operation is NP-hard, no polynomial time algorithm to find the
merge of minimum cost is known. As usual, two approaches are possible in this
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Fig. 8. The CFG from Figure 1(a) in SRF.

situation. First, if the number of array references in the ranges R ∪ S is small,
as in many typical loops, the compiler should explore all possible combinations
of solutions for the φ-equations to achieve the optimal solution. Second, if this
is not the case, estimates for the exact values of wk may be computed using
some heuristic.

8.1 A Heuristic for R 1 S

Any candidate heuristic must choose an evaluation order for the φ-equations
such that, at each assignment wk = φ(.), any argument of φ that is a (not yet
computed) virtual reference is simply ignored. For example, during the estimate
of value w3, in Equation (4), the argument w1 is ignored and the resulting
assignment becomes w3 = φ(a[i + 1], a[i + 2]), which results in w3 = a[i + 1]
(or a[i + 2], for the same cost). The final cost of the merge is dependent on the
order that the heuristic uses to evaluate the set of φ-equations. In our heuristic
(called Tail-Head), the first equation in the evaluation order is the one at the tail
of the loop. From this point on, our heuristic proceeds backward from the tail
of the loop up to the header, evaluating each equation as they are encountered.
At each step, the rules from Section 6 are used to compute the new value of wk ,
which is then used in the evaluation of future equations.

Example 8.1. Consider for example the application of this heuristic to
Equations (2)–(4), from the code fragment in Figure 1(a). The result is shown
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Fig. 9. Mode and update-instruction insertion for Tail-Head heuristic.

in Figure 9. First, the φ-equation s3φ at the tail of the loop (block B6) evaluates
to w3 = a[i+ 1]. This reference is equivalent to a[i] in the next loop iteration.
Next, s2φ in B3 is evaluated using case (3) of Section 6. The φ-function results in
w2 = a[i+ 2]. Next, s1φ , in block B1, is evaluated to w1 = a[i+ 1]. At this point,
all virtual references (i.e., the values of wk) have been computed. In the next
step, update instructions and auto-increment/decrement modes are inserted
into the code such that the references associated to the live ranges being merged
satisfy the computed φ-functions. This results in the addition of auto-decrement
mode to a[i+ 2] in B5, and the insertion of three update instructions: (a) ar+ = 1
on the edge (B1, B3); (b) ar+ = 1 on the edge (B6, B1); and (c) ar+ = −1 on the
edge (B3, B4). Notice that this solution has been achieved by a heuristic, and
thus it might not result in the optimum address register allocation. In fact,
the code fragment in Figure 1(b) adds a single update instruction to the code
(p += 1) and thus is the optimum reference allocation that can be achieved for
the code in Figure 1(a). The Tail-Head heuristic, on the other hand, introduces
three update instructions, as shown in Figure 9. In general, when the Tail-
Head heuristic is applied for the majority of the programs in our benchmark
(Section 9), we noticed that only a few extra update-instructions are required,6

resulting in a better allocation than if the previous known local techniques are
used. In Ottoni et al. [2001] we described an optimal linear-time algorithm for
the merge operator that results in optimal address register allocation under
some special conditions, as in Figure 1(b). Preliminary results suggest that
such conditions seem to be frequent in typical programs. Nevertheless, enough
experimental evidence still needs to be collected to support this approach.

6In some cases, the optimal solution has been achieved.
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(1) void f(int *in, int *out, int n, int *bittbl)
(2) {
(3) int i, j;
(4) unsigned int G0, G1, D0, D1, D2, D3;
(5) unsigned long ITEMP=0, ITEMP2;
(6)
(7) for(j=0;j<16;j++) bittbl[j]=1<<j;
(8)
(9) for(j=0; j<n; j++) {
(10) ITEMP >>=16;
(11) ITEMP2 = ((U32)in[j]) & 0x0000ffff;
(12) ITEMP = (ITEMP2<<5) | ITEMP;
(13) D3 = (U16)(0x0000ffff & (ITEMP >> 2));
(14) D2 = (U16)(0x0000ffff & (ITEMP >> 3));
(15) D1 = (U16)(0x0000ffff & (ITEMP >> 4));
(16) D0 = (U16)(0x0000ffff & (ITEMP >> 5));
(17) G0 = D0 ^ D1 ^ D3;
(18) G1 = G0 ^ D1 ^ D2;
(19) out[2*j] = 0;
(20) out[2*j+1] = 0;
(21) for (i=0; i<8; i++) {
(22) out[2*j] |= ((G0>>i) & 0x0001)?bittbl[2*i]:0;
(23) out[2*j+1] |= ((G0>>(i+8)) & 0x0001)?bittbl[i]:0;
(24) }
(25) }
(26) }

Fig. 10. Code fragment from a real application.

8.2 A Real-World Example

The fragment of code in Figure 10 will be used to illustrate the application of the
LRG algorithm. This code was extracted from one of the program benchmarks
of Mindspeed Technologies Inc. Let’s assume that the target architecture has
four registers with auto-increment(decrement): ar1, ar2, ar3, and ar4.

Consider the loop at line (7) of Figure 10. Register ar1 is allocated to reference
bittbl[j], and auto-increment is used to redirect ar1 to the next iteration of
this loop. The inner loop starting at line (21) requires two registers to reference
bittbl in lines (22)–(23). Registers ar1 and ar2 are allocated to them. Two
update instructions are inserted at the end of this inner loop to redirect ar1
and ar2 to the next iteration, since the two references to bittbl are inside
conditional statements.

The outer loop from line (9) to (25) has five references using the induction
variable j, at lines (11), (19), (20), (22), and (23), which would require five address
registers if we allocate an ar for each reference. The LRG algorithm is applied
to reduce the number of registers required, since only registers ar3 and ar4 are
still available.
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Table I. Live Range Growth Speed-up and Size Overhead

Priority based LRG optimized Comparison (%)
Program name Cycles Size Cycles Size Speedup Size

convenc 4331 4667 3943 4647 9% 0%
convolution 1220 2068 1042 2077 17% +1%
dot product 165 1305 160 1269 3% −2%
biquad N sections 1380 2980 1218 2905 13% −2%
fir array 1471 2626 1263 2666 16% +2%
fir2dim 7684 4546 6728 4566 14% +1%
lms array 2276 3644 1919 3665 18% +1%
mat1x3 1202 2668 1113 2705 7% +2%
matrix1 34657 3057 30520 3135 13% +3%
n complex updates 2985 3300 2336 3410 27% +4%
n real updates 1855 2716 1452 2785 27% +3%
fft 173931 10103 165549 10097 5% 0%
autcor 179633 4003 167238 3990 7% 0%
fir8 280324 5143 256476 5088 9% −1%
latsynth 3115 3408 3050 3402 2% 0%
fir lms2 3454 3353 3317 3298 4% −1%
latanal 703662 3425 691662 3411 2% 0%

In the first iteration, references at lines (19) and (20) are merged with no
cost, since auto-increment can be used in both references to redirect the ar
correctly. Then, the live range (19)–(20) is merged with (23). In this case, the
auto-increment in reference at line (20) is removed, and an update instruction
is needed to add 1 to the ar after line (24). After these two merges, three address
registers are still required, and so one more iteration is needed. In the last LRG
iteration, the live range (19)–(20)–(23) is merged with (22). Suppose that ar3 is
allocated to this live range. This new live range requires an update instruction
ar3 += 2 after line (24), in addition to auto-increment mode at references (19)
and (22), and the auto-decrement mode at references (20) and (23). The refer-
ence at line (11) is the only one based on the array in, and so it is allocated to a
different ar (ar4). Auto-increment mode is used to keep ar4 correctly pointing
to in[j] across loop iterations.

The algorithm ends with a total of three update instructions inserted.

9. EXPERIMENTAL RESULTS

Table I shows the results of applying LRG to a set of typical signal processing
programs. The benchmark used in the experiments is composed by a mix of DSP-
stone benchmark [Zivojnovic et al. 1994] programs and code from Mindspeed
Technologies Inc. applications, running on the DSP described in Section 2. We
have implemented our optimization in an optimizing DSP compiler from Mind-
speed Technologies Inc., which uses an efficient priority-based register coloring
allocation algorithm, combined with local auto-increment/decrement detection.
This is a production-quality optimizing compiler that implements all relevant
optimizations described in Aho et al. [1986], and that is used to compile real-
world applications.

Two experiments have been performed. All compiler optimization flags
were set (on) in both experiments. First, we ran the original compiler. The
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performance of each program (in cycles) is shown in columns 2 and 3 of Table I.
Cycles were measured using an in-house cycle accurate simulator. In the sec-
ond round of experiments (columns 4 and 5), the LRG algorithm proposed in
this paper was used for reference allocation, with the initial set of live ranges
being composed of the single references in the loop. The experimental results
show that LRG results on an average 11% speedup, when compared with the
combination of the original address register coloring algorithm and local auto-
increment/decrement detection. Notice that in both cases all traditional op-
timizations that support address register are active, for example, induction
variable elimination, loop invariant removal and others. In some cases (e.g.
fir2dim) the speedup was very good. The number of cycles saved within a basic
block varied from one to four depending on the application. For the majority of
the programs, we have noticed that our heuristic results in good quality alloca-
tion which usually adds only a few update instructions on the execution paths,
when compared to the optimal allocation. Nevertheless, we also found cases
(latanal.c) in which a manual address register allocation could considerably
improve allocation.

The average size overhead due to update instructions was insignificant
(0.65%), as it was the LRG execution time. Table I shows the size overhead
numbers for each program after the LRG algorithm was used. Notice that for
some cases (e.g., dot product) the overhead was negative. This was possibly
due to the reduction in the numbers of instructions achieved when spill/reload
instructions were substituted by single update instructions.

We have also performed a third experiment, in which the LRG algorithm was
again applied, but this time using for the initial set of live ranges the solution
of an LRA problem for each basic block described in Araujo et al. [1996]. The
resulting speedup was the same for all programs but two, and in those cases the
speedup improvement was smaller than 2%. Hence, there was no substantial
difference in the speedup if the initial set of live ranges was determined by first
solving LRA or not. In other words, in many cases the greedy technique used
in LRG is also enough to find the best allocation for basic block. On the other
hand, it is possible that better results could be achieved if one of the improved
solutions for LRA (Section 4), like Basu et al.’s [1999] approach, were used to
compute the initial set of live ranges.

10. CONCLUSIONS

This paper proposes a technique that improves address register allocation for
auto-increment (decrement) addressing modes. It uses SSA form and a simple,
yet effective, algorithm, to extend previous work in the area toward considering
allocation beyond basic blocks. The algorithm (LRG) is based on the growth of
address register live ranges using a merge operator. Experimental results re-
veal an average 11% performance improvement when compared to an approach
based on local auto-increment optimization and priority-based register coloring.
We plan to continue our work on this problem. In Ottoni et al. [2001] we de-
scribed an optimal linear-time algorithm for the merge operator that results in
optimal address register allocation under some special conditions. Preliminary
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results suggest that such conditions seem to be frequent in typical programs.
Nevertheless, more experimental evidence still needs to be collected to support
this approach.
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