
530 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

[11] H. Eveking, H. Hinrichsen, and G. Ritter, “Automatic verification of
scheduling results in high-level synthesis,” inProc. DATE’99, pp.
59–64.

[12] Y. Hoskoteet al., “Automatic verification of implementation of large
circuits against HDL specification,”IEEE Trans. Computer-Aided De-
sign, vol. 16, no. 3, pp. 217–227, 1997.

[13] P. Asharet al., “Verification of RTL generated from scheduled behavior
in a high-level synthesis flow,” inProc. ICCAD’98, pp. 517–524.

[14] N. Narasimhan, R. Kalyanaraman, and R. Vemuri, “Validation of syn-
thesized register-transfer level designs using simulation and formal ver-
ification,” in Proc. High Level Design Validation and Test Workshop,
Nov. 1996.

[15] N. Mansouri and R. Vemuri, “A methodology for automated verification
of synthesized RTL designs and its integration with a high-level syn-
thesis tool,” inProceedings of FMCAD’98. Berlin, Germany: Springer
Verlag, pp. 204–221.

[16] F. Balarinet al., “Formal verification of embedded systems based on
CFSM networks,” inProc. Design Autom. Conf., 1996, pp. 568–571.

[17] D. Gajski and L. Ramachandran, “Introduction to high-level synthesis,”
IEEE Design Test Comput., vol. Winter, pp. 44–54, 1994.

Expression-Tree-Based Algorithms for Code Compression
on Embedded RISC Architectures

Guido Araujo, Paulo Centoducatte, Rodolfo Azevedo, and
Ricardo Pannain

Abstract—Reducing program size has become an important goal in the
design of modern embedded systems targeted to mass production. This
problem has driven efforts aimed at designing processors with shorter
instruction formats (e.g., ARM Thumb and MIPS16) or able to execute
compressed code (e.g., IBM PowerPC 405). This paper proposes three
code compression algorithms for embedded RISC architectures. In all
algorithms, the encoded symbols are extracted from program expression
trees. The algorithms differ on the granularity of the encoded symbol,
which are selected from whole trees, parts of trees, or single instructions.
Dictionary-based decompression engines are proposed for each compres-
sion algorithm. Experimental results, based on SPEC CINT95 programs
running on the MIPS R4000 processor, reveal an average compression
ratio of 53.6% (31.5%) if the area of the decompression engine is (not)
considered.

Index Terms—Code compression, RISC architecture.

I. INTRODUCTION

As embedded systems are becoming more complex, the size of em-
bedded programs is growing considerably large. The result is systems
in which program memories account for the largest share of the total die
area, more than the area of the microprocessor core and other on-chip
modules. As a consequence, minimizing program size has become an
important part of the design effort (cost) of an embedded system. A way
to achieve that is to restrict the size of instructions. This is the approach
used in the design of the ARM Thumb and MIPS16 processors. Shorter
instructions are obtained mainly by restricting the number of bits that

Manuscript received August 15, 1999; revised February 16, 2000. This work
was supported in part by CNPq under Contract 300156/97-9, in part by FAPESP
under Research Fellowship 1997/10982–0, and in part by the CNPq/NSF 1998
Collaborative Research Project under Grant 680059/99.

The authors are with the Institute of Computing, Unicamp, Camp-
inas, Brazil (e-mail: guido@dcc.unicamp.br; ducatte@dcc.unicamp.br;
rjazevedo@dcc.unicamp.br; pannain@dcc.unicamp.br).

Publisher Item Identifier S 1063-8210(00)09507-X.

encode registers and immediates. Fewer registers imply less freedom
for the compiler to perform important tasks, like global register alloca-
tion, and also more instructions to perform the same amount of com-
putation. The net result is 30–40% smaller programs running 15–20%
slower than programs using standard RISC instructions [1]. Another
way to reduce the size of a program is to design processors that can ex-
ecute compressed code. In order to do that, the decompression engine
must perform real-time code decompression. Moreover, because pro-
grams have branch instructions, decompression should restart from the
target of any branch instruction. These are the two major features that
distinguishcode compressionfrom other data-compression problems,
turning impractical for this problem well-known data-compression al-
gorithms like Lempel and Ziv [2] and its variations. This paper deals
with the problem of finding code compression techniques that allow
efficient implementation of real-time decompression engines.

This paper is divided as follows. Section II discusses prior work on
the problem of code compression. All algorithms proposed here use
expression trees or parts of expression trees to perform compression.
Expression trees are constructed as described in [3]. We use expression
trees as the basis of our compression algorithms because compilers tend
to generate very similar expression trees from program statements. In
the first algorithm (Section III), symbols are whole trees and the al-
phabet is formed by all distinct trees in the program. In the second al-
gorithm (Section IV), trees are decomposed into smaller distinct parts
(i.e.,patterns), which are then encoded. Finally, in the third algorithm
(Section V), the alphabet is the set of all distinct instructions from all
trees in the program. Using these algorithms, we developed a set of ex-
periments aimed at measuring the final compression ratio1 , which in-
cludes the decompression engine size overhead. Section VI compares
the resulting compression ratio using each approach. A decompression
engine, located between main memory and cache, is described in Sec-
tion VII. Section VIII summarizes the work and sets new directions.

II. RELATED WORK

Research on code compression has been very active in the compiler
community, e.g., [4] and [5]. Nevertheless, its goal is to find compact
program representations rather than enable real-time code decompres-
sion. As a consequence, important issues on decompression engine de-
sign, like engine size and performance, are frequently ignored. For ex-
ample, in Section VI, we show that the algorithm that produces the best
program compression does not result in the smallest silicon area if the
decompression engine area is accounted.

The first approach for code compression in a RISC architecture was
originally proposed by Wolfe and Channin [6]. In [6], the compres-
sion algorithm is based on encoding byte-long symbols in a cache line
using Huffman codewords. The decompression engine discussed by
Wolfe and Channin is described in [7]. Lefurgyet al. [1] proposed a
code compression technique in which common sequences of instruc-
tions are replaced by a single fixed-length codeword. Wolf and Lekatsas
[8] associate symbols to instruction fields and encode field streams
using Huffman codewords. The IBM CodePack PowerPC 405 pro-
cessor is an architecture designed to execute compressed code. In Code-
Pack, Huffman codewords encode sequence of instruction bits within
a cache-line.

The main contribution of this paper is a practical and effective ap-
proach for the code compression problem, supported by extensive ex-
perimental data and a number of engine architectures (see [3] for de-
tails). The algorithms we propose have been tested using programs

1compression ratio= size of compressed program/size of uncompressed pro-
gram

1063–8210/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000 531

Fig. 1. Percentage of program trees covered by distinct trees.

from the SPEC CINT95 benchmark running on the MIPS R4000 pro-
cessor and compiled with gcc -Os (version 2.8.1).

III. T REE-BASED COMPRESSION

In tree-based compression (TBC), the alphabet is formed by all
unique expression trees in the program. Instructions are collapsed into
sequences, each forming an expression tree. We have noticed that the
number of distinct trees in a program is much smaller than the total
number of trees. On average, distinct expression trees correspond to
only 24% of all trees in a program. The selection of the best method
to encode trees depends on how they contribute to the program size.
In order to determine that, we ordered the set of distinct trees based
on how frequent they show up in each program. The cumulative
distribution of the distinct trees in the programs was then computed.
The result is shown in the graph of Fig. 1. On average, 80% of all
program trees are covered by only 20% of the most frequent ones.
This suggests that expression trees should be compressed using an
encoding that assigns smaller (larger) codewords to (un)frequent
trees. Huffman encoding [2] is such an algorithm. In [3], we studied
encoding methods based on variations of Huffman codewords for the
R4000 processors. Unfortunately, designing fast Huffman decoders is
complicated and usually results in decoders that are more expensive
than if fixed-length codewords are used [7].

In order to simplify the design of the decompression engine, we de-
veloped a compression algorithm, based on fixed-length codewords,
that explores the exponential nature of the tree frequency distribution
while producing very high compression. The algorithm divides the set
of distinct trees intonc classes, each classk havingnk trees. The
number of classes (nc) is determined exhaustively by exploring all pos-
sible partitions from two to eight classes. For each partition of a given
number of classes, we determine (again exhaustively) all possible com-
binations of class sizes and measure their compression ratio. The com-
bination, from all possible partitions, that results in the smallest com-
pression ratio is then selected as the best partition for that program.
From this perspective, the goal of the compression algorithm is to per-
form a piecewise discretization of the frequency distribution shown in
Fig. 1, so as to minimize the final compression ratio.

Fixed-length codewords of sizedlog
2
nke are then assigned to trees

in classk. For each codeword, we append a prefix of sizedlog
2
nce

bits that is used by the decoder to identify the class. The compression
algorithm substitutes each expression tree in the program by its corre-
sponding prefix and codeword.

Fig. 2. Discretization of the frequency distribution for programli after class
partitioning. Class I (IV) has<1% (>90%) of all distinct trees.

Fig. 3. Compression ratio for different partitions.

Consider, for example, programli and a partition of its tree set into
four classes. The best compression ratio2 (23.4%) assigns 1/5/8/12 bits
to classes I/II/II/IV. The combination of four classes that minimizes
the compression ratio for programli divides the curve ofli (Fig. 2)
into four intervals, each corresponding to a class. Once the best com-
pression ratio for a given partition is determined, we repeat the algo-
rithm for other partitions. Fig. 3 shows the resulting compression ratios
when the tree set for each of the programs in the benchmark is parti-
tioned into two to eight classes. Notice that the compression ratio de-
creases as the number of classes increases until it reaches a minimum,
after which it starts to increase again. This occurs because the algo-
rithm automatically assigns smaller (larger) codewords to classes for
which the trees have a high (low) average frequency distribution. The
more classes are added, the lower is the average frequency difference
between two neighbor classes and the larger is the overhead due to the
prefix bits required by the new classes. Eventually, the benefit gained
by the discretization is offset by the prefix bits overhead, and the com-
pression ratio starts to increase. It is interesting to notice that for almost
all programs, the minimum compression ratio is achieved when the par-
tition is performed using four classes. In some cases (e.g.,go), the best
compression ratio occurs for five classes. Nevertheless, the average dif-
ference of the compression ratio between classes five and four is only

2All compression ratio numbers take into consideration the prefix size.

532 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

0.09%. The average compression ratio for all programs is 27.2% and
is achieved when four classes are used.

Codewords are allowed to split at the end of each 32-bit word, and
bits from split codewords are spilled into the next word. We noticed
that small compression ratios can only be achieved if we allow this to
happen. This implies that the decompression engine should be able to
keep track of codeword boundaries inside the current memory word
and to put together pieces of a split codeword during two consecu-
tive memory fetches. In [9], we propose a variation of TBC for the
TMS320C25 DSP.

IV. PATTERN-BASED COMPRESSION

The key idea of pattern-based compression (PBC) is an operation
that factors out the operands (operand patterns) from the expression
trees of a program. The factored expression trees are calledtree
patterns.We call the task of removing operands from an expression
tree operand factorization[10]. An operand pattern is formed by
traversing the instruction sequences in the expression tree, listing
the operands when they are encountered. The sequence of opcodes
without its operands forms the tree-pattern. In [3], we have designed
a number of experiments to evaluate operand factorization based
compression. As before, the individual frequencies of each unique tree
and operand patterns were determined, and the cumulative percentage
of the expression trees covered by these patterns was computed.
Again, the frequency of tree and operand patterns decreases almost
exponentially as the pattern becomes less and less frequent. The
compression ratio for tree (operand) patterns is on average 13.0%
(26.8%) and is achieved when tree (operand) patterns are divided
into four classes. The final compression ratio, when the codewords
for both patterns are combined, is on average 39.8%. We designed a
decompression engine for the PBC algorithm [3], and it contributed
21.5% to the final compression ratio (61.3%).

V. INSTRUCTION-BASED COMPRESSION

Instruction-based compression (IBC) is motivated by the large
percentage of expression trees that are composed of single instructions.
Our experimental results [3] reveal that, in general, frequent trees
have very few instructions, the most frequent being single instruction
trees. Rare trees are also fairly small, while medium-frequency trees
are larger (two to four instructions). On average, all instructions in a
program are replica of only 18.3% of its instructions, and a similar
exponential behavior was again observed for single instructions [3].
The same compression algorithm employed in Sections III and IV
was used here as well. The resulting final compression ratio was on
average 31.5%, and again it is achieved using only four classes. The
decompression engine for the IBC algorithm [3] contributed 22.1% to
the final compression ratio (53.6%).

VI. A LGORITHM COMPARISON

Fig. 4 shows the final compression ratios for all programs, using all
three algorithms discussed above. The average compression ratio for
TBC/PBC/IBC is, respectively, 60.7/61.3/53.6% (27.2/39.8/31.5%) if
the decompression engine overhead is (not) included. Although the use
of operand factorization in PBC results in a small compression ratio, the
improvement is jeopardized by the presence of two sets of prefix bits
(one for each pattern) instead of one. Notice that IBC (TBC) produces
the best ratio if the engine overhead is (not) included. The reason is
that although two entries in the TBC dictionary store distinct trees, the
trees can have similar instructions. On the other hand, entries in the IBC
dictionary are unique instructions. Hence, the best compression ratio

Fig. 4. Final compression ratio for TBC/PBC/IBC.

for program compression does not lead to the smallest silicon area if
the engine size is considered.

VII. T HE IBC DECOMPRESSIONENGINE

Because IBC results in the best compression ratio, we show here its
corresponding decompression engine. TBC and PBC decompression
engines are described in detail in [3]. The decompression engine for
IBC is shown in Fig. 5. A codewordIc is extracted from a memory
word and decoded by the instruction generator (IGEN),which outputs
a pointer (iaddr) to the instruction dictionary (ID). Each entry inID
stores a single uncompressed instruction that is passed to the processor.
The area used by the decompression engine is basically the size of dic-
tionaryID (average 18.3%) plus the size of theATT module (average
3.8%), which is responsible for mapping uncompressed addresses to
compressed addresses.

In our architectural model, the processor executes uncompressed in-
structions that generate uncompressed address requests, while memory
stores compressed instructions. During the execution of branch/jump
instructions, the address requested to memory by the processor changes
from the address of the next instruction to some arbitrary (uncom-
pressed) address. In order to satisfy this request, the decompression
engine should be able to map (uncompressed) processor addresses to
(compressed) memory addresses. To make this possible, we propose an
address translation module (Fig. 5), where the mapping is performed
using theAddress Translation Table (ATT).

When the processor fetches an instruction, it first looks for the
requested word in the instruction cache. If there is a cache miss,
the processor requests one cache line from memory. The processor
Requested Address is then used to generate an address toATT.
The address ofATT is computed fromRequested Address by
masking out six bits: two bits that are used for byte offset, three bits
to address the word in the cache-line (assuming eight-word cache
lines), and one extra bit to reduce the number of entries (size) ofATT.
As a consequence of this extra bit,ATT can only address one every
two consecutive compressed cache lines in memory, increasing the
response time of the engine to a memory request. Therefore, there
is a tradeoff that can be explored by the designer between the size
of ATT and the latency of the decompression engine. After the mask
operation is finished,Significant bits are used to point toATT.
EachATT entry has two fields:ADDR andOFFSET. TheADDR field is
the address of the memory word (Word) that contains the compressed
target requested by the processor. Notice that theIBC algorithm can
compress more than one instruction into a single memory word, and
these can start at any one of its 32-bit positions. FieldOFFSET (five
bits) is used by theSHIFT module to determine the position of the
requested compressed instruction inWord.

The latency of this address translation approach is mainly a result
of the time required to fetch, from memory, the sequence of words up

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000 533

Fig. 5. Decompression engine for the IBC algorithm.

to the requested instruction, plus the time to decode it. After that, the
decompression engine fetches, using an internal counter, the remaining
words that are required by the processor to complete the compressed
cache line. The size of the address translation engine is basically the
size ofATT. There arek = ProgramSize=(4 + 8 + 2) lines inATT,
each line containingw = log

2
(CompressedSize) ADDR bits and five

OFFSET bits.

VIII. C ONCLUSIONS ANDFUTURE WORK

This paper proposes a set of three code compression algorithms for
programs running on RISC architectures. All algorithms are based on
expression trees. Symbols used for compression are whole expression
trees, parts of expression trees (patterns), or single instructions. A pre-
liminary design of the IBC decompression engine is under way. The
design is based on a synthesizable VHDL model of the decompression
engine using Leonardo Spectrum Tools from MGC/Exemplar.

REFERENCES

[1] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, “Improving code density
using compression techniques,” inProc. MICRO-30 Int. Symp. Microar-
chitecture, Dec. 1997, pp. 194–203.

[2] T. C. Bell, J. G. Cleary, and I. H. Witten,Text Compression, ser.
Advanced Reference Series. Englewood Cliffs, NJ: Prentice-Hall,
1990.

[3] G. Araujo, P. Centoducatte, R. Azevedo, and R. Pannain, “Expression
tree based algorithms for code compression on embedded RISC architec-
tures,” Institute of Computing, Univ. of Campinas, http://www.dcc.uni-
camp.br/ic-main/publications-e.html, Jan. 2000.

[4] M. Franz and K. Thomas, “Slim binaries,”Commun. ACM, vol. 40, no.
12, pp. 87–94, Dec. 1997.

[5] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. Proebsting,
“Code compression,”SIGPLAN Program. Lang. Design Implement.,
pp. 358–365, June 1997.

[6] A. Wolfe and A. Channin, “Executing compressed programs on an em-
bedded RISC architecture,” inProc. MICRO-25 Int. Symp. Microarchi-
tecture, Dec. 1992, pp. 81–92.

[7] M. Beně̆̆s, A. Wolfe, and S. M. Nowick, “A high-speed asynchronous
decompression circuit for embedded processors,” inProc. 17th Conf.
Advanced Research in VLSI, 1997, pp. 219–236.

[8] H. Lekatsas and W. Wolf, “Code compression for embedded systems,”
in Proc. 35th ACM Design Automation Conf., 1998, pp. 516–521.

[9] P. Centoducatte, G. Araujo, and R. Pannain, “Compressed code execu-
tion on DSP architectures,” inProc. 12th Int. Symp. System Synthesis,
Nov. 1999, pp. 56–61.

[10] G. Araujo, P. Centoducatte, M. Cortes, and R. Pannain, “Code compres-
sion based on operand factorization,” inProc. MICRO-31 Int. Symp. Mi-
croarchitecture, Dec. 1998, pp. 194–201.

