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This paper examines the problem of code-generation for Digital Signal Processors (DSPs). We
make two major contributions. First, for an important class of DSP architectures, we propose
an optimal O(n) algorithm for the tasks of register allocation and instruction scheduling for
expression trees. Optimality is guaranteed by sufficient conditions derived from a structural
representation of the processor Instruction Set Architecture (ISA). Second, we develop
heuristics for the case when basic blocks are Directed Acyclic Graphs (DAGs).

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Optimi-
zation

General Terms: Algorithms

Additional Key Words and Phrases: code generation, register allocation, scheduling

1. INTRODUCTION
Digital Signal Processors (DSPs) are receiving increased attention due to
their role in the design of modern embedded systems like video cards,
cellular telephones, and other multimedia and communication devices.
DSPs are for the most part used in systems where general-purpose archi-
tectures cannot meet domain-specific constraints. In the case of portable
devices, for example, power consumption and cost may make usage of
general-purpose processors prohibitive. The same is true when high-perfor-
mance arithmetic processing is required to implement dedicated function-
ality at low cost, as in the case of specific communications and computer
graphics applications. The increasing use of these processors has revealed a
new set of code-generation problems that are not efficiently handled by
traditional compiling techniques. These techniques make implicit assump-
tions about the regular nature of the target architecture and microarchitec-
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ture—which is rarely the case with DSPs, where irregularities in the
microarchitecture are the very basis for efficient computation of specialized
functions. Due to hard on-chip memory constraints and hard real-time
performance requirements, the code generated for these processors has to
meet very high quality standards. Since existing compilation techniques
are not up to this task, the vast majority of the code is written directly in
assembly language. This research is part of a project directed towards
developing compilation techniques capable of generating quality code for
such processors (http://ee.princeton.edu/spam). The implementation of
these techniques forms the compiling infrastructure used in this work,
which is called the SPAM compiler.

There is a large body of work in code generation for general-purpose
processors. Code generation is, in general, a hard problem. Instruction
selection for expressions subsumes Directed Acyclic Graph (DAG) covering,
which is an NP-complete problem [Garey and Johnson 1979]. Bruno and
Sethi [1976] and Sethi [1975] showed that the problem of optimal code
generation for DAGs is NP-complete, even for a single register machine. It
remains NP-complete for expressions in which no shared term is a subex-
pression of any other shared term [Aho et al. 1977a]. An efficient solution
for a restricted class of DAGs has been proposed in Prabhala and Sethi
[1980]. Code generation for expression trees has a number of O~n! solu-
tions, where n is the number of nodes in the tree. These algorithms offer
solutions for stack machines [Bruno and Sethi 1975]; register machines
[Sethi and Ullman 1970; Aho and Johnson 1976; Appel and Supowit 1987];
and machines with specialized instructions [Aho et al. 1977b]. They form
the basis of code generation for single issue, in order execution, general-
purpose architectures.

The problem of generating code for DSPs and embedded processors has
not received much attention, probably due to the small size of the programs
running on these architectures (which enabled assembly programming).
With the increasing complexity of embedded systems, programming such
systems without the support of high-level languages has become impracti-
cal. Many of the problems associated with code generation for DSP proces-
sors were first brought to light by Lee [1988; 1989] in a comprehensive
analysis of the architecture features of these processors. Code generation
for DSP processors has been studied in the past, but it is only recently that
a number of interesting articles have tackled some of the important
problems in this area. Marwedel [1993] proposed a tree-based mapping
technique for compiling algorithms into microcode architectures. Liem
[1994] uses a tree-based approach for algorithm matching and instruction
selection, where registers are organized in classes and register allocation is
based on a left-first algorithm. Datapath routing techniques have also been
proposed [Lanner et al. 1994] to perform efficient register allocation. Wess
[1990] proposed using normal form schedule for DSP architectures, and
offered a combined approach for register allocation and instruction selec-
tion using the concept of trellis diagrams [Wess 1992]. Kolson et al. [1996]
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recently proposed an interesting exact approach for register allocation in
loops. An overview of current research on code generation for DSP proces-
sors, and embedded processors in general, can be found in Marwedel and
Goosens [1995].

In this article we propose an optimal two-phase algorithm which per-
forms instruction selection, register allocation, and instruction scheduling
for an expression tree in polynomial time for a class of DSPs. The architec-
ture model here (described in Section 2) is of a programmable highly
encoded Instruction Set Architecture (ISA), fixed-point DSP processor.
Formally, this class is an extension of the machine models discussed in
Coffman and Sethi [1983]. In the first pass (Section 3), we perform
instruction selection and register allocation simultaneously, using the
Aho-Johnson algorithm [Aho and Johnson 1976]. The second pass, de-
scribed in Section 4, is an O~n! algorithm that takes an optimally covered
expression tree with n nodes and schedules instructions such that no
memory spills are required. A memory spill is an operation where the
content of a particular register is saved in memory, due to a lack of
available registers for some operation, and then reloaded from memory
after that operation is finished. Note that a memory store operation
required by the architecture topology is not considered a memory spill. The
proposed algorithm uses the concept of the Register Transfer Graph (RTG)
that is a structural representation of the datapath, annotated with ISA
information. We show that if the RTG of a machine is acyclic, then optimal
code is guaranteed for any program expression tree written for that
machine. In this case the DSP is said to have an acyclic datapath. Since
DAG code generation is NP-complete, we develop heuristics for the case of
acyclic datapaths (Section 5), which again uses the RTG concept. In Section
6 we show the results of applying these ideas to benchmark programs.
Section 7 summarizes our major contributions and suggests some open
problems.

2. ARCHITECTURAL MODEL

DSP processors are irregular architectures when compared with their
general- purpose counterparts. This section analyzes the main architecture
features that distinguish DSPs from general-purpose processors with re-
spect to basic block code generation. It is not our purpose in this section to
give a detailed and extensive analysis of these features. A comprehensive
analysis of DSP architectures can be found in Lee [1988; 1989] and Lapsley
et al. [1996].

DSPs can be classified according to the types of data they use as
fixed-point DSPs and floating-point DSPs. In applications running on a
fixed-point DSP, users are responsible for scaling the result of integer
operations. This is done automatically in floating-point DSPs. Floating
point units are extremely costly in silicon area and clock cycles, so a large
number of the systems based on DSPs use fixed-point DSPs (from now on
DSP means fixed-point DSP).
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DSPs have on-chip data memory based on fast static RAMs and on-chip
non-volatile program ROM. Unlike general-purpose architectures, DSPs
are not designed with cache or virtual memory systems, since data and
program streams usually fit into the available on-chip memories. Because
on-chip memories are fast and cache misses are not an issue, some DSPs
are designed as memory-register architectures [Texas Instruments 1990].
In order to achieve the bandwidth required by its applications, other DSPs
architectures provide multiple memory banks [Motorola 1990]. Since per-
formance is an important factor for DSP applications, DSP instructions are
usually designed to be fetched in a single machine cycle. In order to achieve
this, instructions are encoded to minimize the number of bits they require.
In some architectures [Texas Instruments 1990] this is done by means of
data memory pages, where instructions need only to carry the offset of the
data within the current page in order to access it.

The goal of the design of a DSP datapath is to implement those functional
units that can speed up costly operations occurring frequently in the
processor application domain. A common example of such units is Multiply
and Accumulate (MAC). Due to design requirements, DSP designers fre-
quently constrain the interconnectivity between registers and functional
units. There are two main reasons for this. First, the desired functionality
usually requires a particular datapath topology. Second, broad interconnec-
tivity translates into datapath buses and/or muxes, which results in
increased cost and instruction performance degradation.

A large number of DSPs are heterogeneous register architectures. These
architectures contain multiple register files and instructions that require
operands and store the resulting computation in different register files
(thus the term heterogeneous). In general-purpose architectures, instruc-
tions do not usually restrict the registers they use, provided they come from
the same register file (hence operand registers are homogeneous). This
considerably simplifies the code generation problem, since it decouples the
tasks of instruction selection from register allocation. Due to this property,
we say that general-purpose architectures are homogeneous register archi-
tectures.

Example 1. An example of a DSP architecture is the TI TMS320C25
Digital Signal Processor (DSP) [Texas Instruments 1990], which is consid-
ered the target architecture in the rest of this paper. This processor is part
of the TI TMS320 family of processors, which makes up a large number of
all commercial DSP processors in use today. The TMS320 family is com-
posed of fixed-point processors (TMS320C1x/C2x/C5x/C54x) which are het-
erogeneous architectures, and also by a number of floating-point homoge-
neous architecture DSPs (TMS320C3x/C4x). The TMS320C25 processor
contains an ISA with specialized memory-register and register-register
instructions. It has three separate register-files (a, p, and t) containing a
single register each.
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3. OPTIMAL INSTRUCTION SELECTION AND REGISTER ALLOCATION

In homogeneous register architectures the selection of an instruction has
no connection whatsoever with the types of registers that the instruction
uses. Selecting instructions for heterogeneous register architectures usu-
ally requires allocating registers from specific register-files as operands for
particular instructions. The strong binding between instruction selection
and register allocation indicates that these tasks must be performed
together [Araujo and Malik 1995].

Consider, for example, the intermediate representation (IR) patterns in
Figure 1, corresponding to a subset of the instructions in the TMS320C25
ISA. In Figure 1, each instruction is associated to a tree-pattern whose
node is composed of operations (PLUS,MINUS,MUL), registers (a, p, t),
constants (CONST), and memory references (m).

These tree-patterns are represented using the three-address form in
Table I. Three-address is a standard compiler representation for instruc-
tions, where the destination of the instruction, its two operands (hence the
name three address), and the operation it performs are present. Any
reference in square brackets is associated to a memory position. Table I
also lists the cost associated to each instruction.

Notice that the instructions implicitly define the registers they use. For
example, the instruction apac can only take its operands from registers a
and p, and always computes the result back into a. Observe also that
operations that transfer data through datapaths like lac m (load register a
from memory position m) and pac (move register p into register a) can
each be represented as a single node, corresponding to the source register
of the transfer operation. The associated cost in this case is only the cost of
moving the data from the source register into the destination register.
Since registers in DSP architectures are a scarce resource, the final code
quality is very sensitive to the cost of routing data through the datapath.

Fig. 1 IR patterns for the TMS320C25 processor.
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3.1 Problem Definition

Optimal instruction selection combined with register allocation is the
problem of determining the best cover of an expression tree such that the
cost of each pattern match depends not only on the number of cycles of the
associated instruction, but also on the number of cycles required to move
its operands from the location they currently occupy to the location where
the instruction requires them to be.

3.2 Problem Solution

A solution for this problem is to use a variation of the Aho-Johnson
algorithm [Aho and Johnson 1976] such that at each node we keep not only
all possible costs for matches at that node, but also all possible costs
resulting from matching the node and moving the result from where it was
originally computed into any other reachable location in the datapath.

Tree-grammar parsers have been used as a way to implement code-
generators [Aho et al. 1989; Fraser et al. 1993]; Tjiang 1993]. They combine
dynamic programming and efficient tree-pattern matching algorithms
[Hoffman and O’Donnell 1992] for optimal instruction selection. We have
implemented combined instruction selection and register allocation using
the OLIVE [Tjiang 1993] code-generator generator, which is based on the
techniques proposed in IBURG [Fraser et al. 1993]. OLIVE takes as input a set
of grammar rules where tree-patterns are described in a prefixed linearized
format. The IR patterns from Table I were converted into the OLIVE

description of Figure 2 by rewriting each instruction three-address repre-
sentation into that format. Notice that the instruction destination registers
are now associated to grammar non-terminals and that these are repre-
sented by lower-case letters in Figure 2.

Rules 1 to 5 correspond to instructions that take two operands and store
the final result in a particular register (a and p, respectively). Rule 6
describes an immediate load into register a. Rules 7 to 10 are associated to
data transfer instructions, and bring the cost of moving data through the
datapath into the total cost of a match. We point out in Figure 2 that, for

Table I. Partial ISA of the TMS320C25 processor

Instruction Operands Destination Cost Three Address Form

add m a,m a 1 a 4 a 1 m
apac a,p a 1 a 4 a 1 p
spac a,p a 1 a 4 a 2 p

mpy m t,m p 1 a 4 t*@m#
mpyk k t,k p 1 a 4 t*k
lack k k a 1 a 4 k

pac p a 1 a 4 p
sacl m a m 1 @m# 4 a
lac m m a 1 a 4 @m#
lt m m t 1 t 4 @m#
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simplicity, we do not represent all patterns corresponding to commutative
operations. For example, instruction add m can be specified in two ways:
PLUS(a,m) and PLUS(m,a). Nevertheless, we consider in the remainder of
this paper that all commutative forms of any operation pattern are avail-
able whenever required.

If we do not consider instruction scheduling and the associated spills at
this point, then the algorithm proposed above is optimal—following from
the fact that this algorithm is a variation of the provably optimal Aho-
Johnson dynamic programming algorithm [Aho and Johnson 1976].

4. SCHEDULING

Optimal instruction selection and register allocation for an expression tree
is not enough to produce optimal code. For optimal code, instructions must
be scheduled in such a way that no memory spills are introduced. Note that
memory positions allocated in the previous phase are not considered spills.
They result from the optimal selection of memory-register instructions in
the ISA, and not from the presence of resource conflicts.

Aho and Johnson [1976] showed that, by using dynamic programming,
optimal code can be generated in linear time for a wide class of architec-
tures. The schedule they propose is based on their Strong Normal Form
Theorem, which guarantees that any optimal code schedule for an expres-
sion tree, in a homogeneous register architectural model, can always be
transformed into Strong Normal Form (SNF). A code sequence is in SNF if
it is formed by a set of code subsequences separated by memory storage,
where each code subsequence is determined by a Strongly Contiguous (SC)
schedule. A code sequence is a SC schedule if it is formed as follows: at
every selected match, m, with child subtrees T1 and T2, continuously
schedules the instructions corresponding to subtree T1 followed by the
instructions corresponding to T2, and finally the instruction corresponding
to pattern m. Wess [1990] used SNF as a heuristic to schedule instructions
for the TMS320C25 DSP.

Fig. 2. Partial OLIVE specification for the TMS320C25 processor (instruction numbers and
names on the right are not part of the specification).
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4.1 Problem Definition

SC schedules are not an efficient way to schedule instructions for heteroge-
neous register set architectures. They produce code sequences whose qual-
ity is extremely dependent on the order in which the subtrees are evalu-
ated. Consider for example the IR tree of Figure 3(a). The expression tree
was optimally matched using the approach proposed in Section 3 and the
target ISA. It takes variables at memory positions m0 to m4 and stores the
resulting computation into one variable at memory position m6, using m5

as temporary storage.
The code sequences generated for three different schedules and its

corresponding three-address representation are showed in Figure 3(b-d).
Memory position m7 was used whenever a spill location was required by
the scheduler. For the code of Figure 3(b) the left subtree of each node was

Fig. 3. (a) Matched IR tree for the TMS320C25; (b) SNF left-first schedule; (c) SNF right-first
schedule; (d) Optimal schedule.
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scheduled first, followed by its right subtree and then the instruction
corresponding to the node operation. The opposite approach was used to
obtain the code of Figure 3(c). Neither the SC schedules in Figure 3(b) and
(c), nor any SC schedule, will ever produce optimal code. This is obtained
using a non-SC schedule that first schedules the addition m2 1 m3 and
then the rest of the tree, as in Figure 3(d). Notice that this schedule is
indeed an SNF schedule, since first the subtree corresponding to m2 1
m3 is contiguously scheduled followed by a storage operation into memory
position m5, and by another code sequence resulting from a SC schedule of
the rest of the tree.

From Figure 3 we can verify how the appropriate SNF schedule mini-
mizes spilling. For example, if the tree of Figure 3(a) is scheduled using
left-first, the result of operation m0 3 m1 is first stored in p and then
moved into a. Just after that, register a has to be used to route the result of
m2 1 m3 into memory position m5. But a still contains a live result (the
result of m0 3 m1). In this case, the code generator has to emit code to spill
the value of a into memory and recover it later. This would not be required
if the scheduler had first stored m2 1 m3 into m5, before loading a with the
result of m0 3 m1.

Problems like the one above are very common in DSP architectures. The
obvious question then is: Does there exist a guaranteed SNF schedule such
that no spilling is required ? We prove that this schedule exists under
conditions that depend exclusively on the ISA of the target processor. But
before doing so, let us define the problem formally: Given an optimally
covered expression tree for an heterogeneous register architecture, deter-
mine an instruction schedule that does not introduce any spill code.

4.2 Problem Solution

This section is divided as follows. In Section 4.2.1 we state and prove a
sufficient condition that a heterogeneous register architecture has to sat-
isfy in order to enable spill-free schedules. In Section 4.2.2 we introduce the
concept of a Register Transfer Graph (RTG) and show how it impacts the
code generation task. Finally, we prove the existence of an optimal linear
time scheduling algorithm for a class of DSP architectures that have acyclic
RTGs.

Let T be an expression tree with unary and binary operations. Let L :
T 3 R ø M be a function that maps nodes in T to the set R ø M, where
R 5 $ri, 1 # i # N% is a set of N registers, and M the set of memory
locations. Let u be the root of an expression tree, with v1 and v2 the
children of u. Consider that after allocation is performed, registers L~v1!
5 r1, L~v2! 5 r2 are assigned to v1 and v2, respectively. Let T1 and T2 be
the subtrees rooted at v1 and v2, as in Figure 4. From now on, the terms
expression tree and allocated expression tree are used interchangeably,
with the context distinguishing whether the tree is allocated or not.
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4.2.1 Allocation Deadlock.

Definition 1. An expression tree contains an allocation deadlock iff the
following conditions are true: (a) L~v1! {/ M, L~v2! {/ M, (b) L~v1! Þ
L~v2!, and (c) there exist nodes w1 and w2, and w2 { T2 such that L~w1!
5 L~v2! and L~w2! 5 L~v1!.

The above definition can be seen in Figure 4. This is the situation when
two sibling subtrees T1 and T2 each contain at least one node allocated to
the same register as the register assigned to the root of the other sibling
tree. Using this definition it is possible to propose the following result.

THEOREM 1. Let T be an expression tree. If T does not have a spill–free
schedule, then it contains at least one subtree that has an allocation
deadlock.

PROOF. Assume that all nodes u in T are such that Tu is free of
allocation deadlocks and that no valid schedule exist for T. According to
Definition 1, Tu does not have an allocation deadlock when

● (a) L~v1! 5 M (L~v2! 5 M). In this case, a SNF schedule exists if
subtree T1 (T2) is scheduled first, followed by subtree T2 (T1).

● (b) L~v1! 5 L~v2!. This cannot happen because no non-unary operator of
an expression tree takes its two operands simultaneously from the same
location.

● (c) L~v1! Þ L~v2!, L~w1! 5 L~v2!, but no node w2 exists for which
L~w2! 5 L~v1!. In this case it is possible to schedule T1 first, followed by
T2 and the instruction corresponding to node u. This is a valid schedule

Fig. 4. Allocation deadlock in an expression tree.
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because just after the schedule of T1 is finished, only register r1 is live,
and since no register r1 exists in T2, no resource conflict will occur when
this subtree is scheduled (Figure 5(a)).

● (d) L~v1! Þ L~v2!, L~w2! 5 L~v1!, but no node w1 exists for which
L~w1! 5 L~v2!. This is symmetric to the previous case. Schedule T2 first,
followed by T1 and the instruction corresponding to u (Figure 5(b)).

● (e) L~v1! Þ L~v2!, but no nodes w1 and w2 exist. This case is trivial, any
SC schedule results in a spill–free schedule (Figure 5(c)).

Since the above conditions can be applied to any node u, T will have a valid
schedule that is free of memory–spilling code. This contradicts the initial
assumption. e

Corollary 1. Let T be an expression tree. If T has no subtree containing
an allocation deadlock, then it must have a spill–free schedule. Moreover,
this schedule can be computed using the proof of Theorem 1.

PROOF. Directly from the theorem above. e

4.2.2 The RTG Model and Theorem.

Definition 2. The RTG is a directed labeled graph where each node
represents a location in the datapath architecture where data can be
stored. Each edge in the RTG from node ri to node rj is labeled after those
instructions in the ISA that take operands from location ri and store the
result in location rj.

The nodes in the RTG represent two types of storage: register files and
single registers. Register file nodes represent a set of locations of the same
type that can store multiple operands. A datapath single register (or simply
single register) is a register file of unitary capacity. Register file nodes are
distinguished from single register nodes by means of a double circle.
Because of its uniqueness, memory is not described in the RTG. Instead

Fig. 5. Trees without allocation deadlock.
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arrows are used to represent memory operations. An incoming (outgoing)
arrow pointing to (from) an RTG node r is associated to a load (store)
operation from (into) memory. Notice that the RTG is a labeled graph
where each edge has labels corresponding to the instructions that require
that operation. In other words, if both instructions p and q take one
operand in ri and store its result into rj, then the edge from ri to rj will
have at least two labels, p and q. We say that an architecture RTG is
acyclic if it contains no cycles. As a consequence, any register transfer cycle
in an acyclic RTG has to go through memory.1

Example 2. Consider, for example, the partial OLIVE description in
Figure 2. The RTG of Figure 6 was formed from that description. The
numbers in parenthesis on the right side of Figure 2 are used to label each
edge of the graph. Not all ISA instructions of the target processor are
represented in the description of Figure 2, and therefore not all edges in
the RTG of Figure 6 are labeled. Notice that the RTG of the TMS320C25
architecture is acyclic. Other DSP processors also have acyclic RTGs, like
the processors TMS320C1X/C2X/C5X and the Fujitsu FDSP-4. This paper
proposes a solution for code generation for acyclic RTG architectures.
Unfortunately, other known DSPs like the ADSP-2100 and the Motorola
56000 have cyclic RTGs. Nevertheless, as shown later, code generation for
these processors can also benefit from the results of this work.

THEOREM 2. If an architecture RTG is acyclic, then for any expression
tree there exists a schedule that is free of memory spills.

PROOF. Let T be an expression tree rooted at u, and v1 and v2 be its
children such that L~u! 5 r3, L~v1! 5 r1 and L~v2! 5 r2. Let T1 and T2 be
the subtrees rooted at nodes v1 and v2. Let Pk, (k 5 1,2, . . . ) be subtrees
of T with root pk for which the result of operation pk is stored into memory
(i.e., L~pk! 5 M). Define Qi (i 5 1,2) (dark areas in Figure 7) as the
subtrees formed in Ti after removing all nodes from subtrees Pk. We show
that if the RTG is acyclic, an optimal schedule can always be determined by
properly ordering the schedules for Pk (e.g., P1, P2, P3, P4) and Q1, Q2. Here
we have to address two cases: (a) Assume that T has no allocation deadlock,

1Observe that a self-loop is not considered an RTG cycle.

Fig. 6. TMS320C25 architecture has an acyclic RTG.
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therefore from Corollary 1, T has an optimal schedule; (b) now consider
that an allocation deadlock is present in T and that it is caused by registers
r1 and r2, shown in Figure 7. Assume also that there exist paths from r2 to
r1 in the processor RTG. Observe that for each node in T2 (Figure 7)
allocated to r1, e.g., w2, the path that goes from w2 to its ancestor v2

(allocated to r2) will necessarily pass by a node allocated to memory, e.g.,
p2. This results from the fact that any path from r1 to r2 has to traverse
memory, given that the RTG is acyclic and that it contains paths from r2 to
r1. Notice that one can recursively schedule subtrees P2 and P4 in T2 for
which the root was allocated to memory, and that this corresponds to
emitting in advance all instructions that store results in r1. Once this is
done, only memory locations are live, and the remaining subtree Q2

contains no instruction that uses r1. The nodes that remain to be scheduled
are those in subtrees T1 and Q2. Therefore, the tree T1 ø Q2 ø $u% can
now be scheduled using Corollary 1 and no spill is required. Note that the
same result is obtained if one first recursively schedules all subtrees P1, P2,
P3, P4 (white areas in Figure 7), followed by applying Corollary 1 to
schedule subtree Q1 ø Q2 ø $u%. e

Based on the proof of Theorem 2 above, an algorithm can be designed
that computes the best schedule for an expression tree in any acyclic RTG
architecture. We have designed such an algorithm and named it
OptSchedule.

Fig. 7. The RTG theorem.
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THEOREM 3. Algorithm OptSchedule is optimal and has running time
O~n!, where n is the number of nodes in the subject tree T.

PROOF. The first part is trivial, since OptSchedule implements the
proof of Theorem 2. Also from Theorem 2, the algorithm divides T into a set
of disjoint subtrees ( P1 2 P4, Q1, Q2) and recursively schedules each of
them. Therefore, every node in T is visited only once. Hence, the algorithm
running time is O~n!. e

If the RTG is acyclic for a particular architecture, then optimal sequen-
tial code is guaranteed for any expression tree compiled from programs
running on that architecture. Unfortunately, this is not true for those
architectures that do not have acyclic RTGs. Nevertheless, expression trees
in those architectures can also benefit from this work. Observe from
Corollary 1 that if an expression tree is free of allocation deadlocks, then it
can be optimally scheduled. This is valid for any expression tree generated
from any architecture, no matter whether this architecture has an acyclic
RTG or not. Consider for example that a path is added from p to t in the
RTG of Figure 6. This creates a cycle in the architecture RTG, which does
not go through memory. On the other hand, any expression tree that does
not use this new path is free of allocation deadlocks, and so can still be
optimally scheduled. Such expression trees could be identified by a simple
modification of the instruction selection algorithm. The question of how
many of these trees exist in a typical program is still open.

5. HEURISTIC FOR DAGS

Instruction selection for an expression DAG requires DAG covering, which
is known to be NP-complete [Garey and Johnson 1979]. In practical
solutions to this problem, heuristics have been proposed that divide the
DAG into its component trees by selecting an appropriate set of trees.
However, dismantling the DAG into component trees is not unique, and
there are several ways in which it can be done. Traditionally, in homoge-
neous register architectures, the heuristic is to disconnect multiple fanout
nodes of the DAG [Aho et al. 1988].

Dividing a DAG into its component trees requires disconnecting (or
breaking) edges in the DAG. For code generation, breaking a DAG edge
between nodes u and v implies the allocation of temporary storage to save
the result of operation u, while it is not consumed by operation v. Storage
is usually in memory, but it can be in any location in the datapath. Our key
idea is a heuristic that uses architectural information from the RTG in the
selection of component trees of a DAG such that the resulting code has
minimal spills. Consider for example the DAG of Figure 8. Notice that two
different approaches can be used to decompose this DAG into its component
trees, depending on which edge (e1 or e2) is selected for breaking. From now
on, we show a broken edge by a line segment traversal to the subject edge.
As shown in Figure 8(b), one extra instruction is generated when the
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dismanteling heuristic is based on breaking edge e2 instead of e1. Inciden-
tally, the code in Figure 8(a) is also the best sequential code that can be
generated from the subject DAG. From the architectural description in
Table I, note that the multiplication operation requests its operands from
memory (m) and t, and that the result of the addition operation always
produces its result in the accumulator a.

See also in Figure 6 that to bring any data from a to register t we have to
go through memory. From Figure 8 we can see that the result of the
addition operation m2 1 m3 has to be stored in a and must be moved to
memory or t in order to be used as an operand of the multiplication
operation. But to move data from a to t, we have to go through memory.
Suppose the memory position selected to store this temporary result is m5.
Hence, by breaking DAG edge e1, we are just assigning in advance a
memory operation that will appear on that edge during the instruction
selection phase of code generation. Note that the existence of a register-
transfer path that always goes through memory whenever data is moved
from a to t is a property of the target datapath. Similarly, the register-
transfer path from a to p must also pass through memory.

Fig. 8. (a) Breaking edge e1; (b) breaking edge e2.
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Notice also that when edge e2 is broken, pattern PLUS(a,m) (instruction
add m4) cannot be used to match the addition of m4 with the result of m2

1 m3 in the accumulator a. In this case, instruction lac m5 in Figure 8(b)
has to be issued in order to bring the data from m5 back to the accumulator,
adding a new instruction to the final code.

5.1 Problem Solution

The heuristic we propose to address the problem just described is divided
into four phases. In the first phase (Section 5.1.1), partial register alloca-
tion is done for those datapath operations that can be clearly allocated
before any code generation task is performed in the DAG. During the
second phase (Section 5.1.2), architectural information is employed to
identify special edges in the DAG that can be broken without introducing
any loss of optimality for the subsequent tree mapping stages. In the third
phase (Section 5.2), edges are marked and disconnected from the DAG.
Finally, component trees are scheduled and optimal code generated for
each component tree (Section 5.2).

5.1.1 Partial Register Allocation. A general property of heterogeneous
register architectures is that the results of specific operations are always
stored in well–defined datapath locations. This does not imply total regis-
ter allocation because data has to be routed through the datapath to
locations required by other instructions. Take, for example, operations add
and mul in the target processor. Note that they implicitly define the
primary storage resources used for the operation result. In this case (see

Fig. 9. Expression DAG after partial register allocation was performed and natural and
pseudo-natural edges identified by its corresponding lemma.
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Table I), no register allocation task is required to determine that registers
a and p are used, respectively, to store the immediate result of operations
add and mul. Thus partial allocation can be performed well in advance,
even before breaking the edges of the expression DAG takes place. Again,
this is only possible when an operation uses the same register file to store
its immediate result. In the expression DAG of Figure 9, partial register
allocation can be performed immediately for registers a and p.

5.1.2 Natural Edges. We see in Figure 8 that some edges have specific
properties originating in the target architecture, which allows us to discon-
nect them from the DAG without compromising optimality. These edges,
called natural edges, are defined as follows.

Definition 3. If the matching of edge ~u, v! always produces a sequence
of data transfer operations (in the datapath) that passes through memory,
edge ~u, v! is a natural edge.

Now given an expression DAG D and a target architecture with an
acyclic RTG, it can be shown that a number of edges in D are natural
edges. In order to do so, we state a set of lemmas.

Let r1 and r2 be a pair of registers in the datapath of an acyclic RTG
architecture. And let L : D 3 R ø M be a function that maps nodes in D
into the set of datapath locations R ø M, where R is the set of registers in
the datapath and M the set of memory positions.

LEMMA 1. Let r1 and r2 be registers in the architecture RTG such that
there exists no path from r1 to r2. Therefore, any edge ~u, v! in D for which
L~u! 5 r1 and L~v! 5 r2 is a natural edge.

PROOF. Given that a path from registers r1 to r2 will be traversed
whenever instruction selection is performed on edge ~u, v!, a memory
operation will always be selected during instruction selection on ~u, v!, and
therefore ~u, v! is a natural edge (Figure 10(a)). e

Fig. 10. Natural edges are identified by a single line segment: (a) ~u, v! is natural; (b) ~u, v! is
natural if ri has no self-loop in the RTG.
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LEMMA 2. Edges ~u, v!, for which L~u! 5 L~v! 5 r i 5 1,2, . . . ?R?,
are natural edges only if no self-loop exists on register node ri in the RTG
representation of the target architecture (Figure 10(b)).

PROOF. If an architecture has an acyclic RTG, then any loop in the RTG
(which is not a self-loop) will traverse memory. Thus, if register ri has no
self-loop in the RTG, then any loop starting at ri will go through memory.
Therefore, a memory operation will be selected whenever instruction selec-
tion is performed on edge ~u, v!. Hence ~u, v! is a natural edge. e

Note that the task of breaking natural edges does not introduce any new
operations into the DAG because, during the instruction selection phase, a
memory operation is selected naturally, owing to constraints in the archi-
tecture datapath topology. As a result, no potential optimality is lost by
breaking natural edges.

Example 3. Consider each one of the lemmas above and the RTG of
Figure 6. Observe the expression DAG of Figure 9 after natural edges have
been identified.

(1) From Lemma 1 we can see that when r1 5 a and r2 5 p, every edge
~u, v! such that L~u! 5 a and L~v! 5 p is a natural edge.

(2) Now consider Lemma 2. First take the situation where ri 5 p. From
the RTG of Figure 6, observe that register p has no self-loop. Since the
RTG is acyclic, any DAG edge ~u, v!, where L~u! 5 L~v! 5 p, is a
natural edge. Now consider the case where ri 5 a. Register a in
Figure 6 contains a self-loop, thus nothing can be said about these
edges.

5.1.3 Pseudo-Natural Edges. In the following two lemmas we show that
DAG edges can sometimes interact such that one edge out of a set of two
must result in storage in memory. The edges in this set are called
pseudo-natural edges.

Fig. 11. The selected pseudo-natural edges are identified by a double line segment: (a) one of
the edges uses a loop in the RTG; (b) one of the edges goes through memory.
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LEMMA 3. Consider operation v and its operand nodes u and w in Figure
11 (a). If partial register allocation of these operations is such that L~u! 5
L~v! 5 L~w! 5 ri, i 5 1, . . . ?R?, then edges ~u, v! are ~w, v! pseudo-
natural edges.

PROOF. Note that no binary operation v can take both its operands
simultaneously from the same register. We have to consider two situations:

(a) If node ri has a self-loop in the architecture RTG, one of the edges, e.g.,
~u, v!, could be matched by an instruction that takes one operand
from ri. On the other hand, when this same instruction matches the
other edge, i.e. ~w, v!, it will make use of a register contained in an
RTG loop (not a self-loop) that goes from ri back to ri. As in Lemma 2,
matching ~w, v! will introduce a sequence of transfer operations that
necessarily go through memory, making ~w, v! and ~u, v! pseudo-
natural edges.

(b) If no self-loop node ri exists in the architecture RTG, then both edges
are natural edges according to Lemma 2. e

LEMMA 4. Consider operation v and its operand nodes u and w of Figure
11(b). Let the partial register allocation of these nodes be such that L~u!
5 L~w! 5 rj and L~v! 5 ri. If all RTG paths between each pair of nodes
are such that only one path does not go through memory, then ~u, v! and
~w, v! are pseudo-natural edges.

PROOF. The proof is trivial and follows from the fact that since operation
v cannot take both of its operands from the same register rj at the same
time, it has to use two paths in the RTG to bring data from register rj.
Since only one path from rj to ri does not go through memory, then the
other path has to pass through memory. e

Based on the lemmas above, we need to decide which edge between ~u,v!
and ~w, v! is to be disconnected from the DAG. Loss of optimality might
occur, depending on which edge is selected. The selected pseudo-natural
edge is identified using a double line segment to distinguish it from natural
edges. Unlike natural edges, breaking pseudo-natural edges might result in
compromising the optimality of code generation for the component trees.
However, there is a good chance that this might not happen in actual
practice.

Example 4. Consider Lemmas 3 and 4 and the RTG of Figure 6. Observe
the expression DAG of Figure 9 after pseudo-natural edges have been
identified.

(3) Lemma 3 is satisfied for the case where ri 5 a or ri 5 p.

(4) In this case, if rj 5 p and ri 5 a, only one path exists in the RTG from
p to a that does not go through memory.
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After rules 1 – 4 of Examples 3 and 4 are applied, the expression DAG of
Figure 9 results. Each marked edge in Figure 9 has on its side the number
corresponding to a rule from Examples 3 and 4.

5.2 Dismantling Algorithm

The task of dismantling an expression DAG may potentially introduce
cyclic Read After Write (RAW) dependencies between the resulting tree
components, leading to an impossible schedule. A similar problem was also
encountered in Aho et al. [1977a] and in Liao et al. [1995] when these
authors studied the problem of scheduling worm-graphs derived from DAGs
in single-register architectures. Consider, for example, the reconvergent
paths from nodes u to v and the component trees T1 and T2 of Figure 12(a).
Dismantling the DAG of Figure 12(a) requires that at least one of the edges
of the multiple fanout nodes u and T2 be disconnected. Assume that edges
~u, T2! and ~T2, v! have been selected as the edges to be broken. In this
case, nodes u, v and tree T1 can be collapsed into a single component tree
T3, dismantling the DAG into trees T3 and T4. When an edge between two
nodes is broken, a RAW edge is introduced (dashed lines in Figure 12), in
order to guarantee that the original data dependencies are preserved by the
scheduler. In this case, the resulting RAW edges form a cycle between
component trees T3 and T4, which results in an infeasible schedule for the
component trees.

Note that dismantling is also possible if edge ~T2, w! is broken instead of
~T2, v! (Figure 12(b)). When this occurs, RAW edge ~u, T2! is brought into
the resulting component tree (T3). As a consequence, the potential optimal-
ity of the tree scheduler algorithm OptSchedule cannot be guaranteed
anymore, since now it has to satisfy the constraint imposed by the new
RAW edge inside T3. A possible solution is to modify the tree scheduler

Fig. 12. (a) Cyclic RAW dependency; (b) constraining the tree scheduler.

Code Generation for Fixed-Point DSPs • 155

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.



algorithm such that it can satisfy any RAW constraint inserted into the
tree. Unfortunately, this is a very difficult task for which an efficient
solution does not seem to exist. Hence, we have to dismantle the DAG to
avoid inserting RAW edges into the component trees.

From the two situations analyzed above, we conclude that edges on both
reconvergent paths have to be disconnected in order to guarantee proper
scheduling of operations inside and between component trees. An algorithm
that dismantles the DAG should disconnect edges by using as many natural
and pseudo-natural edges as possible. We have designed such an algorithm,
which we call Dismantle.

The Dismantle algorithm starts by first breaking all natural edges, since
breaking them adds no cost to the total cost for the final code. After this
Dismantle proceeds to identify reconvergent paths. It traverses paths in the
DAG looking for edges marked as pseudo-natural edges. If a pseudo-
natural edge can be used to break an existing reconvergent path, the edge
is broken. Otherwise the outgoing edge that starts the reconvergent path at
the corresponding multiple fanout node is broken. These edges are marked
with a black dot in Figure 13. At this point all reconvergent paths in the
expression DAG have been disconnected. Additional edges are then broken
such that no node ends up with more than one outgoing edge (these edges
are also marked with black dots). The resulting DAG is shown in Figure 13.
It decomposes the original DAG into five expression trees (T1 2 T5).
Finally, these expression trees are scheduled and code is generated for each
expression tree.

Fig. 13. Resulting component trees after dismantling.
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6. EXPERIMENTAL RESULTS

DSPstone [Zivojnovic et al. 1994] is a benchmark designed to evaluate the
code quality generated by compilers for different DSP processors. DSPstone
is divided into three benchmark suites: Application, DSP-kernel, and
C-kernel. The Application benchmark consists of the program adpcm, a
well-known speech–encoding algorithm. The DSP-kernel benchmark con-
sists of a number of code fragments, which cover the most frequently used
DSP algorithms. The C-kernel suite aims to test typical C program state-
ments. The DSPstone project was supported by a number of major DSP
manufacturers (Analog Devices, AT&T, Motorola, NEC, and Texas Instru-
ments). We used this benchmark for experimental evaluation.

6.1 Expression Trees

We have applied algorithm OptSchedule to expression trees extracted from
programs in the DSP-kernel benchmark. The metric used to compare the
code was the number of cycles that it takes to compute the expression tree.

Observe in Table II that algorithm OptSchedule produces the best code
when compared with two SC schedules, which is what was expected, since
we have proved its optimality. Note that although SC schedules can
sometimes produce optimal code, it can also generate bad quality code, as is
the case for expression tree 6. We can also verify that the same expression
tree generates different code quality when different SC schedules are used.
The structure of the expression tree dictates the best SC schedule, and this
structure is a function of the way programmers write the code.

6.2 DAG Types Distribution

Expression DAGs are classified in trees, leaf DAGs, and full DAGs. Leaf
DAGs are DAGs for which only leaf nodes have outdegree greater than one.
We classify a DAG as a full DAG if it is neither a tree nor a leaf DAG. As
one can see in Table III, the classification reveals that of all basic blocks
analyzed 56% were trees, 38% leaf DAGs, and 6% full DAGs. From the set

Table II. Number of Cycles to Compute Expression Trees Using Right-Left, Left-Right, and
OptSchedule

Scheduling Algorithms

Tree Origin Left-first Right-first OptSchedule

1 real_update 5 5 5
2 complex_update 8 12 8
3 dot_product 8 8 8
4 matrix_1x3 5 5 5
5 matrix 5 7 5
6 iir_one_biquad 14 12 10
7 convolution 6 6 6
8 fir 5 5 5
9 fir2dim 8 12 8

10 lms 12 10 10
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of benchmarks in Table III we see that the majority of the basic blocks
found in these programs are trees and leaf DAGs. Another experiment was
performed, this time using the DSPstone application benchmark adpcm. As
before, basic blocks were analyzed to determine the frequency of trees, leaf
DAGs, and DAGs. In this case, 94% of the basic blocks in this program were
found to be trees, 3% leaf DAGs, and 3% full DAGs. Although dynamic
counting of basic blocks is required in order to provide information on the
impact on execution time, one can reasonably argue that a large portion of
this program execution time is spent in processing expression trees. Thus,
tree-based code generation is very suitable for this application domain.

6.3 Expression DAGs

In Table IV we list a series of expression DAGs extracted from programs in
the DSP-kernel benchmark. We selected the largest DAG found in each
kernel for comparison with hand-written code. Hand-written assembly code
(or assembly reference code) for each DSP-kernel program is available from
the DSPstone benchmark suite [Zivojnovic et al. 1994].

Compiled code was generated for each DAG, and the resulting number of
cycles for a single loop execution is reported in Table IV. Compiled code was
also generated using a standard heuristic, which dismantles the DAG by
breaking all edges at multiple fanout nodes (column Standard Heuristic).
Table IV shows the number of processor cycles and the overhead with
respect to hand-written code. Note that the overhead is due only to the
DAG dismantling technique. The average overhead when comparing the
compiled (Dismantle Heuristic) and the assembly reference code was 7%.
Leaf nodes are treated the same way in both heuristics. They are simply
duplicated into different nodes—one for each outgoing edge. As a conse-
quence, both heuristics have the same performance for the case of leaf
DAGs. The average overhead (Dismantle Heuristic) for the case of full
DAGs was higher (11%) than for the case of Leaf DAGs (4%). The discrep-
ancy is due to the existence of memory-register and immediate instructions
in the processor ISA, which can have zero cost multiple fanout operands
when these are memory references or constant values. Although the
heuristic gains may seem very small, every byte matters. Since DSPs have

Table III. Types of DAGs in Typical Digital Signal Processing Algorithms

DSP kernel Basic Blocks Trees Leaf DAGs DAGs

real_update 1 1 0 0
complex_update 1 0 0 1

dot_product 1 1 0 0
matrix_1x3 4 3 1 0

matrix 6 4 2 0
iir_one_biquad 1 0 0 1

convolution 2 1 1 0
fir 3 1 2 0

fir2dim 9 6 3 0
lms 4 1 2 1
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restricted on-chip memory size, generation of high quality code is the most
important goal for the compiler.

7. CONCLUSION

With increasing demand for wireless and multimedia systems, it is ex-
pected that use of DSPs will continue to grow, but research on compiling
techniques for DSPs has not received adequate attention. These devices
continue to offer new research challenges, which originate in the need for
high quality code at low cost and power consumption.

We propose an optimal O~n! instruction selection, register allocation,
and instruction scheduling algorithm for expression trees, for a class of
heterogeneous register DSP architectures that have acyclic RTGs. We then
extend this by proposing heuristics for the case when basic blocks are
DAGs. This approach is based on the concept of natural and pseudo-natural
edges and seeks to use architectural information to help in the task of
dismantling the expression DAG into a forest of trees.

However, the question of how to generate good code for architectures that
have cyclic RTGs remains open. As mentioned before, expression trees
generated in these architectures can also benefit from the optimality,
provided they are free of any allocation deadlock. An interesting question
which follows from this is how many expression trees with this property are
generated in programs running on these architectures. More work is under
way to answer this and other questions.
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