
Code Compression Based on Operand Factorization

Guido Araujo, Paulo Centoducatte and Mario Cortes
University of Campinas
Institute of Computing

Campinas, SP 13083-970, Brazil
fguido,ducatte,cortesg@dcc.unicamp.br

Ricardo Pannain
PUC Campinas

Institute of Informatics
Campinas, SP 13020-904, Brazil

pannain@zeus.puccamp.br

Abstract

This paper proposes a code compression technique
called operand factorization. The central idea of operand
factorization is the separation of program expression trees
into sequences of tree-patterns (opcodes) and operand-
patterns (registers and immediates). Using this technique,
we show that tree and operand patterns have exponential
frequency distributions. A set of experiments were designed
to explore this feature. They reveal an average compres-
sion ratio of 43% for SPECInt95 programs. A decompres-
sion engine is proposed, which assembles tree and operand
patterns into uncompressed instruction sequences. An en-
coding that improves the design of the decompression en-
gine results in a 48% compression ratio. Compression ratio
numbers take into consideration an estimate of the decom-
pression engine size.

1. Introduction

As embedded systems are becoming more complex, the
size of embedded programs are growing considerably large.
The result are systems in which program memories account
for the largest share of the total die area, more than the
area of the microprocessor core and other on-chip modules.
Thus, minimizing program size has become an important
part of the design effort (cost) of an embedded system. A
way to achieve that is to restrict the size of instructions. This
is the approach adopted in the design of the Thumb and
MIPS16 processors. In these processors, shorter instruc-
tions are achieved mainly by restricting the number of bits
that encode registers and immediates. Fewer registers imply
in less freedom for the compiler to perform important tasks,
like global register allocation. It also means more instruc-
tions to perform the same amount of computation. The net
result are 30%-40% smaller programs running 15%-20%
slower than programs using standard RISC instructions [9].
Another way to reduce the size of a programs is to design

a processor which can execute compressed code. In order
to do that, the decompression engine has to perform real-
time code decompression. Moreover, because programs
have branch instructions, the engine must allow for random
codeword decompression. These are the two major features
which distinguishcode compressionfrom other compres-
sion problems.

This paper proposes a code compression technique based
on the concept ofoperand factorization. The key idea of
this approach is an operation that factors out the operands
(operand-patterns) from the expression trees of a program.
The factored expression trees are calledtree-patterns. Tree
and operand patterns are then encoded separately. Varia-
tions of operand factorization have been used before [4, 3].
Our work differ from theirs in the sense that we are mainly
interested in finding an encoding which allows efficient im-
plementations of real-time decompression engines. More-
over, we provide a quantitative approach to the problem
which validates the efficacy of our algorithm. This is mea-
sured by the compression ratio1. This paper is divided as
follows. Section 2 discusses prior work on the problem of
code compression. Section 3 details the concept of operand
factorization. The compression algorithm is studied in Sec-
tion 4, and the decompression engine is described in Section
5. Experimental results are analyzed in Section 6. Section
7 summarizes the work and proposes two extensions.

2. Related Work

A large number of techniques have been proposed in the
literature for the file compression problem [2]. Many of
these techniques are sequential in nature, in the sense that
the decompression of the current codeword requires sym-
bols from the partially decompressed string. A classical ex-
ample is Lempel-Ziv (LZ) compression [11]. In LZ com-
pression the dictionary is encoded together with the com-

1compression ratio = size of compressed program / size of uncom-
pressed program

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

pressed string. Pointers to previously parsed substrings are
used to encode the current substring. Decompression is
done substituting a pointer by the sub-string it points to. For
the case of real-time decompression, this implies in a large
latency.

The first approach for code compression in a RISC archi-
tecture was originally proposed by Wolfe and Channin [14].
The processor described in [14] is calledCode Compres-
sion RISC Processor(CCRP). In the CCRP code is com-
pressed one cache-line at a time. Compressed cache lines
are fetched from main-memory, uncompressed and put into
the instruction cache. Instructions in the cache are exactly
as in the original uncompressed program. This requires
a new design for the instruction cache refill engine, but
no modification in the core processor. Program target ad-
dresses have different values if the line is in main-memory
or in cache. The CCRP uses a main-memory basedLine Ad-
dress Table(LAT) to map (uncompressed code) addresses in
the cache to (compressed code) addresses in main-memory.
A clever encoding of the LAT entries restricts the size of
the table. The CCRP uses aCache Line Address Looka-
side Buffer(CLB) to store a set of recently fetched LAT
entries. The compression algorithm for the CCRP is based
on Huffman encoding [6] of byte long symbols. Using this
approach, a 73% compression ratio has been reported for
the MIPS instruction set [14, 8].

Lefurgy et al. [9] proposed an interesting code compres-
sion technique based on dictionary encoding. In [9] object
code is parsed and common sequences of instructions are
replaced by a single codeword. Only frequent sequences
are compressed. Escape bits are used to distinguish be-
tween a codeword and an uncompressed instruction. The
instructions corresponding to each codeword are stored into
a dictionary in the decompression engine. Codeword bits
are used to index the dictionary entries. The decompression
engine expands codewords into their original instruction se-
quences in the dictionary. Since the compressed program
is composed of codewords and uncompressed instructions,
branch targets are recomputed so as to reflect their new lo-
cation in the program. The target address bits is divided into
two parts, the address of the compressed word and an offset
from the beginning of the compressed word. The target ad-
dress is then computed by adding these two. This technique
requires modifications in the control unit of the processor
core. Lefurgy et al. studied two compression techniques.
The first approach is based on fixed-length codewords. Bet-
ter compression ratios were achieved through nibble aligned
variable length encoding. In this case, average compression
ratios of 61%, 66%, and 74% have been reported for the
PowerPC, ARM and i386 processors respectively [9].

Liao et al. [12] proposed a compression technique based
on dictionaries. The main idea in [12] is the substitution
of common instruction sequences for sub-routine calls. A

hardware mechanism is proposed to minimize the cost of
the sub-routine return instruction. The average compression
ratio reported for the TMS320C25 processor was 82%.

Wolf and Lekatsas [10] proposed a similar approach to
operand factorization. Unlike operand factorization, the se-
lection of the instruction combinations is not based on ex-
pression trees. The average compression ratio reported for
the MIPS architecture was 51%. It is not clear from [10] if
this number takes into consideration an estimate of the size
of the decompression engine.

3. Operand Factorization

The central idea in this paper is the separation of each
expression tree in the program into two components:tree-
pattern, formed by the instructions in the expression tree
after removing its operands; and a sequence of operands,
known asoperand-pattern, containing the registers and im-
mediates used by the tree-pattern. Expression trees are con-
structed as in [1]. They do not contain branch instructions
nor cross basic block boundaries. We call the task of remov-
ing operands from an expression treeoperand factorization.
Operand factorization is not a new concept though. It has
been proposed in [13] as an encoding technique for inter-
mediate representation compression. Consider for example,
the expression tree in Figure 1(a). Figure 1(b) shows the
tree-pattern resulting after the operands have been factored
out from the original expression tree.Stars(wild-cards) are

addiu r4, r4, 1 addiu *, *, *
lui r1, 0 lui *, *
sw r1, 0(r4) sw *, *(*)

(a) (b)

[r4,r4,1,r1,0,r1,0,r4]

(c)

Figure 1. (a) Expression tree; (b) Tree-pattern;
(c) Operand-pattern.

used in place of the original operands. An operand-pattern
is formed by traversing the instruction sequences in the ex-
pression tree, listing the operands when they are encoun-
tered. Figure 1(c) shows the operand-pattern determined af-
ter the expression tree in Figure 1(a) is factored. In order to
study operand factorization, we use a set of SPECInt95 pro-
grams. The programs were compiled for the MIPS R2000
using gcc -O2 version 2.8.1. Although the R2000 is an old
processor, it enabled us to leverage on in-house tools and
expertise. On the other hand, the R2000 is a classical RISC

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

architecture that has many of the features of a modern RISC
processor.

We have noticed that the number of (distinct) tree and
operand patterns in a program is not only small, but also
much smaller than the number of expression trees in the
same program. Table 1 lists the number of expression trees
and patterns for our program set. From Table 1, gcc has
311488 different expression trees, which can be represented
by 1547 tree-patterns, i.e. only 0.5% of all trees. This small
number can be explained by: (a) the reduced number of
instructions in the instruction set of a RISC processor; (b)
the small size of the majority of the expression trees, and
therefore, the small number of possible ways in which in-
structions can be combined; (c) the (deterministic) ways in
which compilers generate code forabstract syntax treecon-
structs, likeif-then-else statements andfor loops.
Similar numbers can also be derived for operand-patterns.
Operand-patterns have more uniform distributions though.
For example, gcc has 311488 operand sequences and these
can be represented by 41486 operand-patterns, i.e. 13.3%
of all sequences.

Program Expression Tree- Operand-
Trees Patterns (%) Patterns (%)

go 54651 578 (1.1) 12561 (23.0)
li 15761 157 (1.0) 3056 (19.4)
compress 1444 125 (9.0) 731 (51.0)
perl 62915 648 (1.0) 11209 (18.0)
gcc 311488 1547 (0.5) 41486 (13.3)
vortex 128104 471 (0.4) 16143 (13.0)
ijpeg 38426 767 (2.0) 9839 (26.0)

Table 1. Number of tree and operand pat-
terns in a program. The numbers in paren-
theses are percentage with respect to the to-
tal number of expression trees and operand
sequences.

Interesting enough, small programs seem to be much less
redundant than large programs. In compress (the smallest
program studied), tree-patterns correspond to 9% of all pos-
sible trees in the program, while operand-patterns are 51%
of all operand sequences. This happens because statements
like if-then-else andfor are compiled into very sim-
ilar set of patterns. Large programs use this set many times,
while small programs do not. An important issue in our
study is the determination of the size contribution of each
tree and operand pattern. Two experiments have been car-
ried out to answer that. In the first experiment, the indi-
vidual frequencies of each unique tree-pattern were deter-
mined. Tree-patterns were then ordered in a decreasing or-
der of frequency, and the cumulative percentage of the ex-

0

20

40

60

80

100

0 20 40 60 80 100

Pr
og

ra
m

 T
re

e-
pa

tte
rn

s
(%

)

Tree-patterns (%) -- Decreasing frequency

(a)

go

li

compress

perl

gcc

vortex

ijpeg

0

20

40

60

80

100

0 20 40 60 80 100

Pr
og

ra
m

 O
pe

ra
nd

-p
at

te
rn

s
(%

)
Operand-patterns (%) -- Decreasing frequency

(b)

go

li

compress

perl

gcc

vortex

ijpeg

Figure 2. (a) Percentage of covered expres-
sion trees; (b) Percentage of covered operand
sequences.

5

10

15

20

25

30

35

0 20 40 60 80 100

Pr
og

ra
m

 b
its

 (
%

)

Tree-patterns (%) -- Decreasing size contribution

(a)

go

li

compress

perl

gcc

vortex

ijpeg

0

10

20

30

40

50

60

70

0 20 40 60 80 100

Pr
og

ra
m

 b
its

 (
%

)

Operand-patterns (%) -- Decreasing size contribution

(b)

go

li

compress

perl

gcc

vortex

ijpeg

Figure 3. Percentage of program bits due to:
(a) tree-patterns; (b) operand-patterns.

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

pression trees covered by these patterns was computed. The
results are shown in Figure 2(a). The frequency of each
tree-pattern is the derivative of the graph in Figure 2(a).
Based on that, we reach the conclusion that the frequency
of a tree-pattern decreases almost exponentially as the pat-
tern becomes less and less frequent. Figure 2(a) shows that
on average 20% of the tree-patterns correspond to almost
all trees in a program. This rule works for all programs in
Figure 2(a) but compress. The distribution of expression
trees in compress is much more uniform. A similar graph
was also derived for operand sequences. Figure 2(b) shows
the cumulative number of operand sequences in a program
that are covered by distinct operand-patterns. On average,
20% of the operand-patterns account for about 80% of the
operand sequences in a program. As before compress num-
bers differ from the other programs. The fact that frequent
patterns correspond to a large share of the total number of
bits in a program cannot be implied only based on the fre-
quency of the patterns. The size of each pattern has to be
considered. We have noticed (Figure 4) that for the majority
of the cases, patterns with medium frequencies are larger
than very uncommon/common patterns. The contribution
of each pattern, in terms of program bits, was then com-
puted. Figure 3(a) plots the cumulative percentage of the
program bits due to tree-patterns. Tree-patterns in the hori-
zontal axis are ordered based on its size contribution to the
program. Tree-patterns can contribute to at most 35% of all
program bits, because tree-patterns correspond only to op-
code bits. In the R2000 architecture [7] at most 11 bits (i.e.
35.2% of an instruction) are used for opcode. The graph
in Figure 3(a) reveals that 20% of the tree-patterns corre-
spond to approximately 32% of all program bits. A sim-
ilar graph (Figure 3(b)) was also determined for operand-
patterns. Although the contribution of operand-patterns is
more scattered across different programs, still 20% of the
operand-patterns correspond to 50%� 5% of all program
bits.

4. Compression Algorithm

The experiments in Section 3 reveal that a small percent-
age of small tree and operand patterns account for the large
majority of the bits in a program. This confirms, at an in-
struction level, the observation made in [9] about the role
played by small bit strings in program code. On the other
hand, it also brings to light a feature of programs that cannot
be captured by other compression methods. Operand fac-
torization recognizes the fact that any encoding technique
which intermixes opcode and operand bits during compres-
sion misses the opportunity to capture the high correla-
tion exhibited by tree and operand patterns. For example,
an algorithm which performs sequential compression, like
LZ [11], will not be able to detect the simple tree-pattern

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

T
re

e-
pa

tte
rn

s
si

ze
 (

bi
ts

)

Tree-patterns (%) -- Decreasing frequency

go

li

compress

perl

vortex

ijpeg

Figure 4. Distribution of the average tree-
pattern size.

[lw *,*,* : add *,*,*] . Any non-sequential al-
gorithm which considers a program as a set of bit strings
will also miss that. Consider for example, the tree-pattern
[lw *,*,*] and a processor which encodes the opcode
and the destination register (in this order) using 6 bits each.
If a byte is chosen as the size of the encoding symbol,
then the first byte of instructions[lw r2,*,*] and[lw
r15,*,*] are encoded as two different codewords, even
if pattern[lw *,*,*] accounts for a considerable share
of the program bits. Moreover, operand factorization can
identify operand-patterns which are shared by two different
tree-patterns. For example, in gcc operand-pattern[r2,
r0, r4] is used by expression trees[ori r2, r0,
r4] and[addu r2, r0, r4] . Based on that, we en-
code tree and operand patterns separately. Expression trees
are encoded as codeword pairs[Tp;Op], whereTp (Op) is
the codeword for a tree (operand) pattern. The encoding al-
gorithm is divided in two phases. First (Section 4.1), tree
and operand patterns are encoded. Second (Section 4.2),
codewords are compacted into a compressed program.

4.1. Pattern Encoding

The analysis above shows that tree and operand patterns
have very non-uniform distributions. This suggests that a
variable-length encoding algorithm can result in improved
compression ratios. On the other hand, variable length en-
coding implies in low decoding efficiency. The main issues
involved here are: detecting the length of a codeword, ex-
tracting and aligning codeword bits. We studied four dif-
ferent encoding methods to encode patterns. The first two
methods are fixed-length (i.e. lossy) and Huffman encod-
ing. The other two methods (described below) take into
consideration the impact of encoding in the performance of
the decompression engine.

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

� Bounded-Huffman (BH)
In Bounded-Huffman a escape bit is appended to
the beginning of the codeword so as to identify if
the codeword uses Huffman or fixed-length encoding.
Bounded-Huffman is also used in MPEG-2 [5] as a
way of limiting the size of the Huffman codeword.

� VLC Encoding (VLC)
This is a variation of the MPEG-2 VLC encoding [5].
In this method, Bounded-Huffman codewords are se-
lected so that the codeword leading zeroes encode the
size of the codeword. The goal of this method is to
simplify the codeword extraction logic.

In Section 6, two sets of experiments were performed in
order to determine the best encoding technique for pro-
gram patterns. The experiments show that using Bounded-
Huffman encoding for both tree and operand patterns re-
sults in an average 37% compression ratio. Moreover, this
ratio is only 2% higher than the ratio resulting if patterns
were encoded exclusively using Huffman. The experiments
also show that the compression ratio resulting by encoding
patterns using VLC is on average 3% higher than that of
Bounded-Huffman.

4.2. Codewords Compaction

After tree and operand patterns are encoded, they are
appended sequentially to form a list of codeword pairs:
[Tp1, Op1| Tp2, Op2| : : :| Tpn, Opn] . Bars are used
here to mark the end of a codeword pair, and the beginning
of another. Codewords are allowed to split at the end of
each 32-bit words. Bits from splitted codewords are spilled
into the next word. The size of a codeword is limited to 16
bits, so that in the worst case, a word will carry at least one
pattern. The possibility of splitting codewords and the use
of a variable length code puts a lot of pressure in the design
of the decompression engine. On the other hand, we have
noticed that large compression ratios can only be achieved
if codewords can split across word boundaries. The rea-
son, also noticed in [9], is that many common patterns are
originated from a single instruction word. Therefore, con-
straining codewords to a single word considerably limits the
compression ratio.

5. Decompression Engine

This section proposes a decoding engine for our com-
pression method (Figure 5). Our approach is to trade part of
the silicon area gained by an aggressive compression, for an
improved design of the decompression engine. The decom-
pression engine works in two phases. First, fieldsTp and
Op are extracted from the compressed word. Second,Tp

is mapped into a sequence of uncompressed instructions,

andOp is used to generate registers and immediate bits for
them. This information is fed into the Instruction Assembly
Buffer (IAB) that assembles the decompressed instructions.
In the following sections we describe each module of the
decompression engine.

C
O

M
P

R
E

SS
E

D
 T

R
E

E

TGEN

RGEN

TPD

addiu
lui
sw

0 0 00

0 0 0 0

0 0 0 1

Tp

Op

IAB

RS1
RS2
RD

IMB

IGEN

BSEL

BADDR
Mux

IMD

2 4

tpaddr

8
2

n

sw
 r

1,
 0

(r
4)

lu
i

r1
, 0

ad
di

u
 r

4,
 r

4,
 1

ITYPE ENDOPECODE

Figure 5. The Decompression Engine.

5.1. Tree-pattern Generation

The Tree-pattern Dictionary (TPD) stores the opcodes
encoded by each tree-pattern codeword.Tp is decoded
by the Tree-pattern Generator (TGEN) into a TPDaddress
tpaddr . The opcode fields encoded byTp are then
fetched from a sequence ofTPDentries starting attpaddr .
Each TPD entry is composed of three fields:OPCODE,
ITYPE , andEND. FieldOPCODEcarries the opcode bits of
an instruction in the tree-pattern. FieldITYPE encodes the
type (i.e. format) of the instruction. The information stored
in ITYPE is used by theIAB to decide how to assemble a
decompressed instruction. TheIAB puts togetherOPCODE,
register (RS1, RS2, RS2) and immediate (IMB) bits to form
an instruction. Bit-fieldENDis used to check for the last in-
struction in the tree-pattern. The overhead of theTPD, with
respect to the uncompressed programs, is shown in Table 2.
On average, theTPD is only 1.7% of the original program
size.

5.2. Register Generation

The Register Generator (RGEN) is a state machine that
decodes theOp field of the incoming compressed word, into

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

a sequence of operand registers required by the instructions
in the tree-pattern. The output ofRGENis formed by three
(register) buses:RS1, RS2 andRD, that generate the bits
corresponding to the instruction source and destination reg-
isters. The number of states ofRGENis bounded by the
number of instructions in the largest tree-pattern of the pro-
gram. In those cases when a tree-pattern is smaller than the
largest tree-pattern in the program, the unused state vari-
ables can be made don’t care for theRGENcombinational
logic. Operand-patterns that have immediates can be used
to simplify theRGENlogic. When the operand-pattern en-
coded byOp contains an immediate, the register bus asso-
ciated to the immediate operand is not needed and can be
made don’t care. For example, the operand-pattern[r2,
r5, 4] will result in RD = 00010, RS1 = 00101 and
RS2 = xxxxx (i.e. don’t cares). Notice that patterns
which share registers can also be used to minimize the
RGENlogic. For example, sequence[r2, r0, r5] re-
sults in similar values for register busesRSDandRS2 as
sequence[r2, r3, r5] . In other words, the encod-
ing of the product terms in the combinational logic of the
RGENmachine reflects the sharing of common registers in
the operand sequences. This encoding of operand-patterns

Program TPD IMD RGEN
Ratio (a) Ratio (b) Ratio (c)

go 1.0 1.0 5.5
li 0.6 2.7 2.4
compress 6.0 5.0 12.6
perl 0.9 2.1 3.0
gcc 0.6 1.2 2.4
vortex 0.4 1.2 1.7
ijpeg 2.3 2.0 6.6

Table 2. Percentage with respect to the un-
compressed program of: (a) TPD Ratio; (b)
IMD Ratio; (c) RGENRatio.

can be naturally translated into a minimization problem for
theRGENlogic. An upper bound on the size ofRGENwas
determined by adding up the size (in bits) of all operand-
patterns. This is equivalent to have a dictionary implemen-
tation for theRGENmodule. In this case, the average RGEN
size with respect to the uncompressed program (RGEN Ra-
tio in Table 2) is 4.9%. Notice that 4.9% is a very loose
bound for the size of RGEN, given that it does not consider
the minimization resulting from a state machine implemen-
tation.

5.3. Immediate Generation

TheIMD module in Figure 5 stores the immediates used
by the program. A single entry inIMD is provided to each

distinct immediate in the program, no matter which instruc-
tion uses it, or how many times it shows up. For example,
a single constant 4 is stored for instructions[bgez r5,
4] , [lw r6, 4(r29)] , and[srl r5, r3, 4] . We
use the variation on the size of immediates to minimize the
number of bits stored inIMD. An evaluation of the size of
the immediates reveals that, on average, more than 70% of
the immediates in a program can be encoded into less than
16 bits. Immediates are clustered into memory banks ac-
cording to the number of bits they use. Memory bank ad-
dressBADDRand bank selectionBSELare generated by the
IGEN module from codewordOp. IGEN is a state machine
that works in parallel withRGENandTGEN. This approach
considerably reduces the average number of distinct imme-
diates in a program (26.7%). As a result, the average share
of the compression ratio due to the IMD (Table 2) is only
2.2%.

5.4. Branch Target Address

We borrow here the ideas proposed in [9]. The branch
target is divided into a target addressaddr (21 bits) and
offset (5 bits). Unlike the approach in [9], branch in-
structions are compressed. During decompression the val-
ues ofaddr andoffset are retrieved from theIMD dic-
tionary and the branch instruction is assembled. We assume
that the control unit of the processor treats branch offsets
as aligned to codeword boundaries (i.e. bit aligned). Dur-
ing a fetch operation, the word at addressaddr is fetched
from memory and the compressed instruction is extracted
starting at bitoffset . The overall reduction in the branch
range is 32. Nevertheless, for the programs analyzed, only
a small percentage of targets required more than 21 bits.
For those branches, a jump table is provided which stores
the addresses of the targets. Similarly to [9], jump table
addresses are patched up to reflect the new compressed ad-
dresses.

6. Experimental Results

Three sets of experiments have been designed to deter-
mine the best encoding for tree and operand patterns. The
purpose of the first set was to determine the compression
ratio using fixed-length and Huffman encoding. The goal of
the second set was to determine the best splitting between
Huffman and fixed-length encoding in Bounded-Huffman.
Tree and operand patterns were ordered into two separate
lists according to their contribution (in bits) to the program.
Patterns were then encoded using combinations of fixed-
length and Huffman codewords. In the first (last) combi-
nation, 0% (50%) of the patterns were encoded using Huff-
man (fixed-length), while the rest was encoded using fixed-
length (Huffman). The results of the experiments are plot-

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

10

15

20

25

30

0 5 10 15 20 25 30 35 40

C
om

p.
 R

at
io

 d
ue

 to
 T

re
e-

-p
at

te
rn

s
(%

)

Percentage of Tree--patterns Encoded Using Huffman (%)

(a)

go

li

compress

perl

gcc

vortex

ijpeg

15

20

25

30

35

40

45

50

55

60

0 5 10 15 20 25 30 35 40C
om

p.
 R

at
io

 d
ue

 to
 O

pe
ra

nd
-p

at
te

rn
s

(%
)

Percentage of Operand-patterns Encoded Using Huffman (%)

(b)

go
li

compress
perl
gcc

vortex
ijpeg

12

14

16

18

20

22

24

26

28

30

0 5 10 15 20

C
om

p.
 R

at
io

 d
ue

 to
 T

re
e-

-p
at

te
rn

s
(%

)

Percentage of Tree--patterns Encoded Using VLC (%)

(c)go
li

compress
perl
gcc

vortex
ijpeg

0

50

100

150

200

250

300

0 1 2 3 4 5C
om

p.
 R

at
io

 d
ue

 to
 O

pe
ra

nd
-p

at
te

rn
s

(%
)

Percentage of Operand-patterns Encoded Using VLC (%)

(d)
go
li

compress
perl
gcc

vortex
ijpeg

Figure 6. Compression ratio for: (a) tree-
patterns using BH; (b) operand-patterns us-
ing BH; (c) tree-patterns using VLC; (d)
operand-patterns using VLC.

ted in the graphs of Figure 6(a)-(b). The graphs’ horizontal
axes show the percentage of the patterns which have been
encoded using Huffman. The vertical axes are the share of
the program compression ratio due only to that encoding.
The points between 0% and 50% use a mix of fixed-length
and Huffman codewords, with an escape bit to distinguish
them. From Figure 6(a)-(b) one can notice that the com-
pression ratio tends to saturate. The more patterns are en-
coded using Huffman, the less is their contribution to the
compression ratio. This reflects the exponential distribu-
tion of program patterns studied in Section 3. Patterns that
have small contributions do not change much the program
entropy. Lower entropy results in a Huffman encoding that
approaches fixed-length encoding [2]. By switching from
Huffman to fixed-length encoding, at a point where the pat-
tern distribution becomes more uniform, one can minimize
the impact of not using Huffman. Consider, for example,
program go in Figure 6(a). The contribution to the com-
pression ratio when 5% of the tree-patterns are encoded us-
ing Bounded-Huffman is 12.0%, only 1.4% higher than if
all tree-patterns were encoded using Huffman. A similar
number can also be determined for operand-patterns (Fig-
ure 6(b)).

Encoding Fixed- Huffman Bounded- VLC
Methods Length Huffman

Fixed-length 57.7 46.2 48.1 50.5
Huffman 45.4 35.0 35.8 38.2
BH 46.0 36.6 37.4 39.8
VLC 47.9 37.5 38.3 40.7

Table 3. Average compression ratio after com-
bining encoding methods for tree (rows) and
operand (columns) patterns.

The third set of experiment uses VLC codewords. The
graphs in Figure 6(c)-(d) show the resulting compression
ratio. In this case, fewer patterns are encoded using VLC
than using Huffman in Figure 6(a)-(b). The minima for
tree (operand) patterns occur around 2.5% (0.2%) of the
patterns. The reason comes from the fact that VLC code-
words are larger than Huffman codewords (they have to
encode size information). This becomes evident as more
patterns are encoded using VLC, causing a rapid increase
of the compression ratio that sometimes can surpass 100%.
The average VLC compression ratio contribution for tree
(operand) patterns in all programs was 13.7% (26.9%).

Table 3 shows the average compression ratio, when the
encoding methods for tree and operand patterns are com-
bined. The Bounded-Huffman and VLC compression ra-
tios were determined from the graphs of Figure 6(a)-(d) by
taking the average of the global minima of all programs.

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

10

20

30

40

50

60

70

80

90

100

TPD Overhead

Program compression

���
���
���
��� IMD Overhead
���
���
���
��� RGEN Overhead

��

����

���� ����

����
��
��
��
����
��
��
��

����

���
���
���
��� ��

��
��
��

��
��
��
��

����

��
��
��
��

����

����

��
��
��
��
��
��
��

��
��
�� ��

��
��
��

��
��
��

��
��
��

����

��
��
��
��

��
��
��
�����
���
���
���

����

��
��
��
��

������
��
��

��
��
��

��
��
��

��
��
��

����

H
uf

f.

V
L

C

go li

H
uf

f.

V
L

C

H
uf

f.

V
L

C

compress

V
L

C

H
uf

f.

perl

H
uf

f.

V
L

C

H
uf

f.

V
L

C
gcc vortex

H
uf

f.

V
L

C

ijpeg

Fi
na

l
C

om
pr

es
si

on
 r

at
io

 (
%

)

Figure 7. Final compression ratio using Huff-
man and VLC.

Table 3 provides a solution space for choosing an encod-
ing method. Based on that, one can trade compression ef-
ficiency for decompression speed. The worst compression
ratio (57%) is achieved when tree and operand patterns are
encoded using fixed-length codewords. As expected, the
best compression ratio (35%) results when both patterns are
encoded using Huffman. The drawback of this encoding
is that it results in unbounded codewords, which carry no
size information. On the other hand, encoding patterns us-
ing VLC results in a 41% compression ratio, This ratio is
only 5.7% higher than Huffman encoding. This is the price
one has to pay in order to minimize the latency of the size
detection logic in the decompression engine.

A fair assessment of the compression efficiency of
operand factorization needs to take into consideration the
silicon area of the decompression engine. The size of the
immediate (Section 5.3) and tree-pattern (Section 5.1) dic-
tionaries can be estimated based on the number of bits they
use. An upper bound on the size ofRGENwas determined
in Section 5.2. Figure 7 shows the final average compres-
sion ratio for Huffman (43%) and VLC (48%) encoding,
once the overhead due to the dictionaries andRGENis con-
sidered. As shown, the engine overhead is fairly small (on
average 8%).

7 Conclusions

This paper proposes a code compression technique
called operand factorization. The best compression ratio
using this technique results in a 35% compression ratio.
A decompression engine is proposed to assemble tree and
operand patterns into uncompressed instructions. This work
can be improved in two ways. First, operand-patterns en-

code the same temporary register twice. If the compiler
schedules expression trees in a pre-order schedule, then it
is possible to eliminate the second reference to a temporary,
thus minimizing the size of operand-patterns. In this case,
the decompression engine should be able to keep track of
the temporary registers. The second improvement can be
done by analyzing the correlation between tree and operand
patterns.

8 Acknowledgments

This research was supported in part by CNPq under con-
tract 300156/97-9.

References

[1] A. Aho, R. Sethi, and J. Ullman.Compilers, Principles,
Techniques and Tools. Addison Wesley, Boston, 1988.

[2] T. C. Bell, J. G. Cleary, and I. H. Witten.Text Compres-
sion. Advanced Reference Series. Prentice Hall, New Jersey,
1990.

[3] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. Proeb-
sting. Code compression. InSIGPLAN Programming Lan-
guages Design and Implementation, 1997.

[4] M. Franz and K. Thomas. Slim binaries.Communication of
the ACM, 40(12):87–94, december 1997.

[5] B. G. Haskell, A. Puri, and A. N. Netravali.Digital Video:
an Introduction to MPEG–2. Chapman & Hall.

[6] D. A. Huffman. A method for the construction of minimum–
redundancy codes.Proceedings of the IRE, 40(9):1098–
1101, September 1952.

[7] G. Kane and J. Heinrich.MIPS RISC Architecture. Prentice
Hall, New Jersey, 1992.

[8] M. Kozuch and A. Wolfe. Compression of embedded sys-
tem programs. InProceedings of the IEEE International
Conference on Computer Design, pages 270–277, October.

[9] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge. Improving
code density using compression techniques. InProceedings
of MICRO–30: The 30th Annual International Symposium
on Microarchitecture, pages 194–203, December 1997.

[10] H. Lekatsas and W. Wolf. Code compression for embedded
systems. InProc. of 35th ACM Design Automation Confer-
ence, 1998.

[11] A. Lempel and J. Ziv. On the complexity of finite sequences.
IEEE Transaction on Information Theory, IT–22(1):75–81,
January 1976.

[12] S. Liao, S. Devadas, and K. Keutzer. A text-compression-
based method for code size minimization in embedded sys-
tems. To appear in ACM Transactions on Design Automa-
tion of Electronic Systems, 4(1), 1998.

[13] T. A. Proebsting. Optimizing an ANSI C interpreter with
superoperators. InACM Conference on Principles of Pro-
gramming Languages, pages 322–332, January 1995.

[14] A. Wolfe and A. Channin. Executing compressed pro-
grams on an embedded RISC architecture. InProceedings
of MICRO–25: The 25th Annual International Symposium
on Microarchitecture, pages 81–91, December 1992.

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

