
Instruction §et Design and Optimizations for Address C o ~ p ~ t ~ t i o n in
Architectures

Guido Araujol, Ashok Sudarsanam2 and Sharad Malik2

Department of Electrical Engineering
Princeton University, Princeton, New Jersey 08544, USA

{ guido,ashok,sharad}@ ee.princeton.edu

Abstract

In this paper we investigate the problem of code gen-
eration for address computation for DSP processors. This
work is divided into four parts. First, we propose a branch
instruction design which can guarantee minimum overhead
for programs that make use of implicit indirect addressing.
Second, we give a formulation and propose a solution for
the problem of allocating address registers (ARs) for ar-
ray accesses within loop constructs. Third, we describe re-
targetable approaches for auto-increment (decrement) op-
timizations of painter variables, and loop induction vari-
ables. Finally, we use a graph coloring technique to allo-
cate physical ARs to the virtual AIis used in the previous
phases. The results show that the combination of the above
techniques considerably improves the final code quality for
benchmark DSP programs.

1. Introduction
Computing the address of an operand is a task frequently

performed in accessing data-streams such as those found in
DSP algorithms. Traditionally, data is stored in arrays and
accesses are made through array indexing. Alternatively,
pointers can be used to directly address data Computing
the address of an array element involves adding an ofiset
to the base address of the array. This computation can be
determined implicitly by the compiler in the case of array
indexing, or explicitly by the programmer when the access
occur by means of pointer variables.

Due to hard performance constraints in this application
domain, it is not surprising that DSP designers have added
hardware features which enable fast address computation.
These features are present in almost every commercial DSP

Work partially supported by B d a n Council for Research and De-
velopment (CNPq) under Proc.204033/87.0 and Institute of Computing,
UNICAMP, Brad.

2Supported by NSF Award MIP 9457396.

processor. They are, in general, based on an Address Gen-
eration Unit (AGU) which contains a number of address
registers and an arithmetic unit that can perform basic arith-
metic operations such as incremenddecrement. The major
goal of a compiler when optimizing address computation
should be to guarantee that this architectural feature is ef-
fectively used by the source program.

2. Addressing Mode Design
In order to make effective use of indirect addressing,

some DSP processors (e.g. TMS320C25 processor) use im-
plicit indirect addressing mode instructions. Consider for
example the following Instruction Set Architecture (IS A)
model.

(a) I <AR,ARP>
(b) B <ARP>
(c) s <ARP>

In instructions of type (a) I represents the instruction op-
code, AR is the address register used by the instruction
to access one of its operands, and ARP the value of the
next selected AR after the instruction is finished. In in-
structions of type (b) B represents a conditional branch and
ARP again is the next AR. In order to give full flexibility to
the programmer, an instruction to explicitly set the next se-
lected AR, like instruction (c), is usually provided. An ad-
ditional S < ARP > is used when the programmer needs
to explicitly set ARP pointing to the AR required by a par-
ticular instruction. In the next section we propose an algo-
rithm which guarantees that only a single S < ARP > is
required for any program which uses implicit indirect ad-
dressing instructions, provided that the target ISA satisfies
a specific implementation for the branch instruction.
2.1. Minimizing the ARP Overhead

Let B < ARP > be a conditional branch instruction in
the target processor ISA. Assume that con$ and label are re-
spectively the condition tested by the branch instruction and

http://ee.princeton.edu

the address of the instruction executed next if cond holds
true. Assume also that the branch instruction execution fol-
lows the machine algorithm below, where P C is the archi-
tecture program counter.

ARP will not be updated. Hence, by making ARPi =
ARj one can also satisfy the address register require-
ment of instruction Ij . Here we restrict ourselves to
two-way branch instructions and structured programs
only.

Branch (cond)
begin

if (cond) then
PC c label;
ARPCAR,

PC t P c + 1;
else

endif;
end

Theorem 1 (Branch Theorem) r f the Branch algorithm
abovle is used to implement the conditional branch instruc-
tion in the Farget architecture, then a single instruction S <
ARP > will be required for any program which uses im-
plicit indirect addressing mode instructions.

Proof. Let I; < A&, ARPi >, Ij < A R j , ARPj > and
Ik < A&, ARPk > be three indirect addressing mode in-
structions and B < ARi > a conditional branch instruction
in the target architecture. Now we must consider two cases:

(a) Assume that I; and I, are instructions in the same ba-
sic block2 such that Ij follows Ii in program order, and
there exist no other indirect addressing instructions in
between them (Fig. l(a)). In this case by making
ARPi = ARj one can satisfy the AR requirement of
instruction Ij after the execution of instruction Ii.

(b) Assume now that Ii. I, and Ik are instructions in dif-
ferent basic blocks, namely Bi, Bj and Bk, such that
Bj and Bk are the successors of B; as in Fig. l(b).
Notice that all instructions in basic block Bj (Bk), but
the first one, will have their AR requirements satisfied
by instructions which precede them within the basic
block. In this case we have only to consider the first
indirect addressing instruction in basic block Bj (Bk),
which we assume to be Ij (Ik). Without loss of gen-
erality consider also that I; is the last indirect address-
ing instruction in basic block Bi. Now suppose that
the branch instruction at the end of basic block Bi was
implemented using the algorithm Branch. In this case,
if the branch is taken, by making ARPl = A&, then
the instruction Ik will have its address register require-
ment satisfied. On the other hand, if the branch falls
through, then according to the algorithm Branch the

Z A basic block is a sequence of consecutive instructions in which the
flow of control enters at the beginning of the sequence and leaves at the
end without halt or deviation except at the end.

Figure 1. Branch algorithm and ARP setup

All other situations (if-then-else, for, while statements and
their composition) not included in cases (a) and (b) above
can be reduced to those two cases by applying data-flow
analysis in the program Control-Flow Graph (CFG). Finally
notice that only one S < ARP > instruction will be re-
quired in order to satisfy the AR requirement of the first in-
direct addressing instruction in the first basic block of the
program, or in case this does not exist, to set the AR for
the first indirect addressing instruction that can be reached
from the beginning of the program, by following only fall-
through paths at each conditional branch. U

From the proof of Theorem 1, one can derive a simple
linear time algorithm to determine the ARP field of each in-
direct access and branch instruction.
Example 1 Consider, for example, the program fragment
shown in Fig. 2(a). Notice that pointer variables a, b and
c are used to copy variables z, y and z into memory. The
CFG corresponding to this program is shown if Fig. 2(b).
In this program segment there exist three basic blocks B1,
BZ and B3. Assume that address registers AR1, ARz and
ARB are respectively allocated to variables a, b and c. Let
instruction *a be the last indirect access in basic block B1.
Also let instruction *b (*c) be the first indirect access in-
struction in basic block Bz (B3). The ARP has to be prop-
erly set before instructions *b and *c are executed in order
to guarantee that the correct address register is used when
required. This can be done by making instruction *a set
its ARP to point to AR3 and the branch instruction ARP to
point to ARz. Notice that if the branch falls-through, then
the ARP is not updated by the branch instruction and at the
start of basic block BB it is correctly pointing to AR3. Sim-
ilarly if the branch is taken, the ARP is updated to point to
ARz just before instruction *b is executed.

103

*a= x;
if (con4 then

"b= y;

Figure 2. (a) Program example; (b) and its cor-
responding CFG

Although the idea behind this approach is extremely sim-
ple, the TMS320C25 DSP, which uses implicit indirect ad-
dressing mode instructions, fails to make effective use of
it. In the TMS320C25 the value of the next ARP is always
loaded, when specified in a branch instruction, regardless
of tRe result of the branch condition 111. The improvements
that could have been achieved from the proposed instruc-
tion design would certainly pay-off. Consider for example
the program adpcm, a large speech compression algorithm
from the DSPstone benchmark suite [2]. When the TI com-
piler generates assembly code for this program it produces
100 instructions ouf of 2170, whose only purpose is to up-
date the contents of the ARE? Some of these instructions
(47) can be eliminated by using the approach described in
part (a) of Theorem 1. Unfortunately a large number of
these (53) are due exclusively to the design choice of the
branch instruction. It may be possible that the implementa-
tion of the proposed Branch instruction impacts the proces-
sor cycle time. This does not seem to be the case though,
based on the information available in [11.

3. Array Index Allocation
In this section we formulate the problem and propose a

solution for the task of allocating virtual ARs to array ac-
cesses which are part of the body of loop statements. The
goal here is to take advantage of the auto-increment (decre-
ment) properties of the AGU such as to perform efficient
access to array elements.

Assume a code generation approach in which indexed
array elements within loops are not decomposed into its
atomic operations. Assume a single loop construct where
induction variable i is linearly updated by the integer quan-
tity s (loop step), s # 0, and for which the loop bound-
aries are statically defined integer quantities. Consider, for
example, the loop of Fig. 3 where s = f and the loop
trip-count is N. The majority of DSP programs use well-
defined loop constructs like the one just described.

Definition P Let access(m) = n &e the function which
maps an instance of array element m into n, where n =
1,2,, . e is the order of the array element in the code se-
quence resulting after the instructions are scheduled. We
say that n i s an access of array element m.

Definition 2 Let nl and n2 be array accesses. Access n1
(n2) is said smaller (larger) than na (nd, denoted by n1 <
n2 (nl > 4, if and only if nl (n2) precedes n2 (nd in
schedule order.

Example 2 In the loop of Fig. 3(b) each time an array el-
ement is used we associate a number in parenthesis corre-
sponding to the order the element is accessed in the pro-
gram. This number is the access of that array element. For
example access(a[i + 13) = 2.

Consider that the array indexes within the loop are affine
functions of the type k * i + p, where k and p are integer
quantities. Assume in the following analysis that k = 1.
This assumption is not a serious restriction, since the in-
dexes of the majority of array accesses in DSP programs are
affine functions of this type. When mutidimensional array
elements are present, array accesses can be usually reduced
to this simple case with the help of induction variable elim-
ination algorithms [3]. Observe that the goal here is to allo-
cate the minimum number of A R s such as to address all the
array accesses within the loop, In this case it is desirable
to maximize the number of accesses that can share a single
AR. In order to identify the possibility of sharing between
two access we define the concept of indexing distance.

Definition3 Let n1 and n2 be array accesses. Let
index(n) be a function which takes access n and returns
the index ussociated with that access. The indexing dis-
tance between accesses n1 and n 2 is the positive quantify:

lindea(n2) - indez(n1)l ifnl < 722
lindez(n2) - indez(n1) + SI ifnl > 122.

Example 3 Consider for example the array accesses of
Fig. 3(a). In this case, as in the majority of loops in DSP
programs, step s = 1. The indexing distance d(l ,4) =
Ii-(i-2)1 = 2, implies that no auto-increment (decrement)
operation can be used to update the address register allo-
cated to access 1, such that it ends up pointing to the data
requested by access 4. On the other hand since d(4 , l) = 1
an auto-decrement operation can be used to redirect the ad-
dress register associated to access 4 such that it points to ac-
cess 1. Notice that this will occur when access 1 is reached
from access 4 across consecutive loop iterations.

Definition4 An indexing graph (IG) i s a directed graph
where each node corresponds to an array access, and there
exist an edge (nl, nz) ifand only i f d (n 1 , n 2) 5 1st.

104

I

Figure 3. (a) Typical loop construct in DSP
drograms; (b) Corresponding IG

neqe exists an edge (n1, nz) in the IG when AGU opera-
tions can be used to update the index register associated to
acce,ss nl, such that it points to the data associated to the
access nz.
Example 4 The IG of Fig. 3(b) was built from the array ac-
cesses patterns in the body of the loop of Fig. 3(a). Observe
that some edges in the IG, e.g. (3,4), captures the possibil-
ity fpr auto-increment (decrement) between may accesses
in sdheduling order. Other edges, e.g. (6,1>, identify auto-
increment (decrement) operations which can be performed
acrobs loop iterations.
3.1. The Array Index Allocation Problem

IS is a consensus among DSP programmers that array ac-
cesses ought to be transformed into pointer operations. The
main reason for that is the inability of compilers to per-
form efficient allocation of A R s in the presence of array
accegses. Although researchers have been addressing this
issue [4], transformation into pointers is still considered the
techhique of the choice.

y a y Index Allocation is the problem of allocating vir-
tual laddress registers to array accesses within loops such
that Ithe total number of virtual address registers is mini-
mize. The importance of this problem comes from the fact
that the majority of array accesses in DSP algorithms occur
within finite loops, which have linearly updated induction
variables and for which the boundaries can be statically de-
fined at compiling time. We assume here an architectural
modbl, as that in Sec. 1, where an Address Generation Unit
(AGP is available with auto-increment (decrement) opera-
tion$. The following approach is not restricted for the case
of i crement (decrement) though. Notice that the definition
of i dexing distance also accommodates non-unitary AGU

Defihition 5 A path ni + nj in the IG is a sequence of
distinct arrays accesses (n;, n;+l,.. . , nj), such that nk <
n g + i , i 5 k 5 j - 1, where i, j = 1,2,. . ..

Definition6 A cycle in the IG i s a sequence of
nodes (ni, ni+l, . . . nj , ni) such that subsequence

I

ope 1 ations.

I

(ni,n;+l ,... ,nj) forms a path in the IG, where

A path in the IG corresponds to the allocation of the same
AR to a sequence of array accesses. Similarly, a cycle indi-
cates that the same AR can be used not only for accesses in
program order, but also by one more access in the next loop
iteration. The problem of minimizing the number of virtual
address registers given an IG can be formulated as a graph
optimization problem as follows:

(IG Covering) Given an 16 determine the disjoint
pathlcycle cover of the graph which minimizes the total
number of paths and cycles. Assume for the purpose of this
problem that a node is a degenerated cycle of zero length.

Notice that not all cycles are allowed in the cover above.
According to Definition 6 a cycle can only contain a sin-
gle backward edge, i.e. an edge from nj to nj where nj >
w. The reason for this is that cycles should reflect auto-
increment (decrement) operations across a single iteration
and not across multiple iterations. Each path and cycle in
the resulting cover corresponds to an address register, The
formulation of IG Covering does not consider the cost of
the instruction to reset the AR at the tail of a path, such that
it can be used by the access at head of the path.

The problem above is similar to the minimum disjoint
cycle cover of a graph (MDCC). The number of disjoint cy-
cles which cover the nodes of a graph is know as the Hamil-
tonian cycle index. Determining the minimum Hamilto-
nian cycle index of a graph has been shown to be NP-
complete [SI. Cycles in a cover for the MDCC problem, un-
like cycles for the IG Covering, can contain more than one
backward edge. Although we have no proof at this point,
we believe that IG Covering is NP-hard.

a, j = 1,2,. . ..

Figure 4. Solving the MDPC for an acyclic IG

Example 5 Consider the IG showed in Fig. 3(b). Cover-
ing the IG in that case produces a two cycle cover which is
represented in bold on Fig. 3(b). Each cycle correspond to
a virtual address register (ARO and AR1).

Given that IG Covering is possibly NP-hard we have
been studying heuristics to tackle this problem. The most
obvious one is to formulate the problem such that auto-
increment (decrement) operations across loop iterations are

105

not permited as in Fig. 4. As a result of that the IG be-
comes acyclic, and the original problem is reduced to the
one of determining the minimum node-disjoint path cover-
ing of the graph (MDPC), for which there exist a O(n) so-
lution [61, where n is the number of nodes in the IG.
Example 6 Solving the MDPC for the acyclic IG of Fig.
4 results in paths (1 , 3 , 4 , 6) and (2,5). Cycles can still be
identified in this case by computing the indexing distance
between the tail and the head of a path. For example, since
d(6,1> = 0 5 1 (d(5,2) = 0 5 1) then virtual regis-
ter ARO (AR1) can be used, at the tail of its corresponding
path, to point to the data accessed at the head of the path. In
this case the heuristic approach produces the same result as
the exact solution in Example 5.

4. Auto-Increment Optimization

Using pointer variables to access data-stream elements
is a common operation in DSP programs. Consider for ex-
ample the program fragment in Fig. 5 extracted from the
DSPstone benchmark kernel $KC. In this program pointer
variables pz and ph are used to initialize the contents of
an array. Let us consider the expression DAG generated

(1)

(3) *px++=i;
(4) *ph++=i;

for (i = 0; i <= LENGTH, i tc)
(2) {

Figure 5. Part of the fir.c DSPstone bench-
mark kernel

from statement (3). By using the tree-based code genera-
tion approach in [7], one can dismantle this DAG into ex-
pression trees using two different approaches (Fig. 6(a) and
(b)). In Fig. 6(a)(b) nodes labeled px are used to repre-
sene operations read px and write px, node str takes the
value contained at memory position i and stores it at the
memory position pointed by pa, and the a Write After Read
(WAR) constraint edge is used to enforce the original post-
increment behavior in the source program.

In the first approach (Fig. 6(a)) tree TI contains the op-
erations used to perform the increment of px and T2 those
required for copying variable i. The total cost of pseudo-
assembly code corresponding to trees Tl and T2 (Fig. 6(b))
was 6 instructions. In another approach operation str and
increment p, are matched by a new instruction stri (store
and increment) as it is shown in Fig. 6(b). The total
cost of the resulting pseudo-assembly code Fig. 6(b) was
4 instructions. Observe that if all auto-increment (decre-
ment) addressing instruction can be compacted this way,
then no overhead will exist due to address computation. We

have introduced pattems which enable matching of auto-
increment (decrement) operations in the expression DAG.
These pattems are specified using primitive Intermediate
Representation (R) operations resulting in improved retar-
getabiiity. The results show that this optimization consid-
erably improves the code quality of benchmark BSP pro-
grams.

W

Figure 6. (a) Dismantling the expression
DAG into trees; (b) Pattern matching auto-
increment operation

5. Loop Induction Variable Optimization
Address registers may be used as general-purpose reg-

isters, although in a very limited context. In this opti-
mization, an address register may be allocated to hold the
loop induction variable, thus obviating the need to access
this variable in memory. The TMS320C25 ISA features a
BANZ instruction (Branch on Auxiliary Register Not Zero)
which was specifically designed to improve the efficiency
of loops. When this instruction is used it becomes pos-
sible to test and modify the loop induction variable using
just one instruction. We have implemented this optimiza-
tion by restructuring loops at the control-flow-graph level, a
machine-independent representation of the program. A vir-
tual address register was allocated to each induction vari-
able in a loop whenever this was possible. The results of
this optimization in Sec. 7 show a considerable improve-
ment in code quality due to this optimization.

6. Global Address Register Allocation
In this section we use a register coloring technique to d-

locate physical address registers to the virtud address reg-
isters used in Sections 3, 4 and 5 . Our god here is to

106

I

I
perform physical allocation for address registers only after

for address computation have been per-
register allocation has been con-

not much consideration has
allocation, particularly
builds an interference

in Sec. 4 is used. The average improvement was
in all but three cases the improvement was larger
to 10%. In @ programs the address computation

with the auto-increment (decrement) operation

Notice that the target architecture
and that at most 7 A R s were used
is possible though that for larger

are not enough and spilling op-
Column Loop Vir. in Ta-
code after loop induction
The average improvement

code was 12%.

n this paper we have addressed the problem of improv-

Program
lir
convolution
matrix
matrix-1x3
dotproduct
nieal-updates
612dim
complex-update
n-complex-updates
iirNbiquad

Unop.
104
73
160
56
56
113
294
86
191
160

- -
In(- -

89
61
153
51
50
89

246
83
142
144 - -

-
)ec - -
14%
16%
4%
9%
11%
21%
16%
4%
26%
10% - -

- -
Lo1
82
51
128
41
45
79
184
83
137
131

- _.

- -

- -
VU.
8%
16%
16%
20%
10%
11%
25%
0%
4%
9%

- -

=

Table 1. Experiments with Address Register
Opt im izat ions

efficient branch instruction design for implicit indirect ad-
dressing mode instructions; (b) a formulation and solution
for the array index allocation problem. We are currently in
the process of investigating better solutions for this prob-
lem.

References

[11 Texas Instruments, Inc. Digital Signal Processing Applica-
twns with the TMS320 Family, 1990.

[2] V. Zivojnovic, J.M. Velarde, and C. Scliager. DSPstone, a
DSP benchmarking methodology. Technical report, Aachen
University of Thecnology, August 1994.

[3] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles,
Techniques and Tools. Addison Wesley, Boston, 1988.

[4] C. Liem, P. Paulin, and A. Jerraya. Address calculation for
retargetable compilation and exploration of instruction-set
architectures. In Proc. 33rd Design Automation Conference,
pages 597-600, June 1996.

[5] M.R. Garey and D.S. Johnson. Computers and Intractabil-
ity. W. H. Freeman and Company, New York, 1979.

[6] ET. Boesch and J.F. Gimpel. Covering the points of a di-
graph with pointdisjoint paths and its application to code
optimization. Journal of the ACM, 24(2):192-198, April
1977.

[7] G. Araujo, S . Mal& and M. Lee. Using register-transfer
paths in code generation for heterogeneous memory-register
architectures. In Proc. 33rd Design Automation Conference,
pages 591-596, June 1996.

[8] K. Kennedy. Design and Optimization of Compilers.
Prentice-Hall, 1972. R. Rustin, editor.

[9] G. Chaitin. Register allocation and spilling via graph color-
ing. In Proc. of the ACM SIGPLA”82 Symposium on Com-
piler Construction, pages 98-105, June 1982.

[101 D. Callahan and B Koblenz. Register allocation via hierar-
chical graph coloring. In Proc. of the ACM SIGPLA”91
Conference on Programming Language Design and Imple-
mentation, pages 192-202, June 1991.

