
Optimal Code Generation for Embedded Memory
Non-Homogeneous Register Architectures

Guido Araujol and Sharad Malik

Department of Electrical Engineering
Princeton University
Princeton, N J 08540

Abstract
This paper examines the problem of code-generation

for expression trees on non-homogeneous register set
architectures. It proposes and proves the optimality o f
an O(n) algorithm for the tasks of instruction selec-
t ion, register allocation and scheduling on a class of
architectures defined as the [l, CO] Model. Optimality
is guaranteed b y suficient conditions derived from the
Register Transfer Graph (R T G , a structural represen-

the processor Instruction Set Architecture (ISA). Ex-
perimental results uszng the TMS32OC25 as the target
processor show the eficacy o f the approach.

tation o f the architecture whic R depends exclusively on

1 Introduction
Non-homogeneous register architectures are fre-

quently encountered in Application Specific Instruc-
tion Set Processors (ASIPs). These processors usually
have a set of very specialized functional units, and as-
sociated registers, that are used to efficiently imple-
ment operations with hard performance requirements
which frequently occur in the application domain of
the processor. Examples of these type of units are:
Multiply and Accumulate Units (MAC) and Address
Calculation Units (ACU). At the same time, the per-
formance and area constraints on the design of ASIP
commonly result in data-paths with restricted connec-
tivity. This specialization is reflected in the Instruc-
tion Set Architecture (ISA) design of these proces-
sors which typically have very specialized instructions
that take operands and store the resulting computa-
tion into well defined registers. As a result, limited
freedom is available to the code-generation algorithm.

The class of non-homogeneous architectures this
paper refers to will be called the [l, CO] Model. This is
a subset of the memory-register architectures in which
only one or an infinite amount (memory) of a partic-
ular storage resource type (from now on called loca-

bination of processor instructions which can opti-
mally implement the operations in the basic block DZ-
red Acyclic Graph (DAG) representation. This task,
called instruction selection, is equivalent to the DAG-
covering problem, which is known to be NP-complete
[2]. An approach to ease the problem is to split
the DAG into expression trees and to perform tree-
covering on each tree separately.

Code-generation for expression trees can be divided
into three individual problems: instruction selection,
register allocation and scheduling. In this paper we
propose an optima1 two phase algorithm which per-
forms instruction selection, register allocation and in-
struction scheduling for an expression tree in polyno-
mial time, under the following constraints:
target processor should fit the [1,00] Model; %
ISA of the processor must satisfy an (easy!) optimal-
ity criterion that we will define later. The first pass of
the algorithm, described in Sec.2, performs instruction
selection and register allocation simultaneously, using
a variation of the Aho-Johnson algorithm [3] that we
extend for non-homogeneous architectures using tree-
grammar parsing. The second pass, described in Sec.3,
is an O(n) algorithm that takes an optimally covered
expression tree and schedules instructions such that
no memory spills are required. The algorithm we pro-
pose for this phase uses the concept of Register Trans-
fer Graph (RTG) that we define. We also provide a
criterion, based on the RTG that enables the ASIP
designer to verify, using exclusively the ISA of the tar-
get architecture, if the code resulting from scheduling
trees on its ISA has the potential to be optimal.

Section Sec.4 contains results of applying the algo-
rithm to some expression trees extracted from DSP
benchmarks. Finally, in Section Sec.5 we summarize
our major contributions and provide directions on how
this work can be extended.

t ions) is available. A notorious instance of this class
is the TMS320C25 processor which will be considered
the target architecture for the rest of this DaDer.

2 Optimal Instruction Selection and
Regist er Allocation

One-of the main problems in generatiig'code for
programs basic blocks [l] is to select the best com-

Work partially supported by CNPq (Brazil) under feuow-
ship award 204033/87.0

Algorithms for instruction selection are usually
based on pattern matching techniques [l]. Another
equally effective approach is to use trellis diagrams
[4]. The method we will describe below is based on
tree pattern matching and aims to provide easy and

01995 ACM 0-89791-771-5/95/0011/0036 $3.50

P&on to make dyitavhard mpy of all or part of this material
without fee is granhi, provided that mpies are not made OT W b u t e d
for pmfit or "menial advantage, the ACM mpyghffmvw notice, the
title of the pubLCation and its date appear and notie is given that
mpying is by pwnission ofthe Assodation for bompnijng Machinery, Inc.
(ACW). To mpy o t h m to republjsh, to post on servers OF to
~~bu~~olists,requiresI;riors~cpermissionan~~afee.

36

fast retargetability.
In the context of code generation, tree-covering of

an expression tree is a pattern matching task in which
instructions of the target processor are represented us-
ing IR tree-patterns [I]. Each pattern has an associ-
ated cost which reflects the number of execution cycles
that the instruction corresponding to the patterin will
take to execute. The tree-covering task is the prob-
lem of covering the expression tree with a set of pat-
terns such that their total number of execution cycles
is minimized.

In homogeneous register architectures the selection
of an instruction has no connection whatsoever with
the types of registers that the instruction uses. Select-
ing instructions for non-homogeneous register (archi-
tectures usually requires allocating register types for
the operands and resulting data. As a consequence,
the IR patterns associated with instructions in this
kind of processor should carry information regaxding
the type of register the instruction uses. Furthermore,
the strong binding between instructions and the regis-
ter types they use suggests that instruction selection
and register allocation are two tasks that should be
performed together.

-
Table 1: Partial ISA of the TMS320C25 processor

Consider, for example, the IR patterns in Tab.1
corresponding to a subset of the instructions in the
TMS320C25 ISA. In Tab.1 each instruction has a,ssoci-
ated with it a tree-pattern whose nodes are composed
of operations (PLUS,MINUS,MUL), registers
constants (CONST) and memory reference (m$?'%?
tice that each instruction implicitly defines the reg-
isters it uses. For example, the instruction apac can
only take its operands from registers a and p , and al-
ways computes the result back into a. Transference
instructions like pac (transfer data from p to a) can
also be represented this way by using only the source
register as the IR pattern.
2.1 Problem Definition

The problem we address here is the problem of de-
termining the best cover of the expression tree such
that the cost of each pattern match depends not only
on the number of cycles of the associated instruction,
but also on the number of cycles required to move its
operands from the location they currently are 'to the
location where the instruction requires them to be.

2.2 Problem Solution
Tree-grammar parsers have been used as a way to

implement code-generators [5] [SI. They combine dy-
namic programming and efficient tree-pattern match-
ing algorithms for optimal instruction selection. Tools
for automatic generation of code-generators based on
tree-grammars parsing [5][6][7] are an effective way to
provide fast retargetability. This is extremely desir-
able for the design process that involves ASIPs, since
typically several possible architectures will be evalu-
ated before one is selected. Based on these obser-
vations we have implemented our instruction selec-
tion/register allocation algorithm using OLIVE [7], a
simple, fast and easy-to-use code-generator generator.
OLIVE takes as input a set of grammar rules, where
tree pattlerns are described in a prefixed linearized
form, similar to the notation used in Tab.1. Sim-
ilarly as rammar description for programming lan-
guages [I!, tree-grammars are formed by terminals
and non-terminals, which are called grammar sym-
bols. Register allocation is specified by assigning one
grammar non-terminal for each location in the archi-
tecture where data can be stored. When this is done
the OLIVlE rules assume the following formah:

where:
locatcon : pattern {cost} = {action};

1. locataon is a non-terminal node representing a
storage resource where the instruction result
should be stored;

2. pattern is an IR tree corresponding to a processor
instruction, containing grammar terminals and
non-terminals;

3. cost is a piece of code that computes the cost of
matching a subtree of the expression tree using
pattern;

4. actzon is another piece of code used to emit the
instruction corresponding to pattern.

Considier, for example, the OLIVE description for
the TMS320C25 architecture (Fig.l) obtained from
the IR patterns of Tab.1. Notice that non-terminals
are represented by lowercase letters and terminals by
capital letters. Rules 1 to 3 and 4 to 5 correspond

a : PLUI;(a,m) €3 = €3; (1) add m
a : PLUS(a,p) €3 = € 3 ; (2) apac
a : MINLlS(a,p) €3 = €3; (3) spac
p : MUL(:m,t) €3 = €3; (4) mpy m
p : MUL(:t,CONST) = €3; (5) mpky k
a : CONST €3 = €3; (6) lack k
a : p €1 = €3; (7) pac
m : a €3 = €3; (8) s a d m
a : m €3 = €3; (9) l ac m
t : m €3 = €1; (10) It m

Figure 1: Partial OLIVE specification of the
TMS320C25 processor (instruction numbers and
names on the right are not part of the specification)

to instructions that take two operands and. store the

37

final result in a particular register (a and p respec-
tively). Rule 6 describes an immediate load into reg-
ister a. Rules 7 to 10 are associated to data trans-
ference instructions and play an important role in the
implementation of the proposed algorithm since they
are responsible for bringing the cost of moving data
through the data path into the total cost of a match.
We should point out that , for sake of simplicity, we
did not represent in Fig. 1 all patterns corresponding
to commutative operations, although we will assume
their existence whenever required.

If we do not consider instruction scheduling and
its associated spills at this point, then the algorithm
proposed above is optimal (refer to [3] for proof).

3 Scheduling
Optimal instruction selection and register alloca-

tion for an expression tree is not enough to produce
optimal code. For optimal code the instructions must
be scheduled in such a way that no additional mem-
ory spills are introduced. Optimal algorithms exist for
the scheduling problem for the class of homogeneous
register architectures [8][3].

The Sethi-Ullman [8] algorithm optimaly schedules
instructions using a two pass approach. The result-
ing code has the least possible number of instructions
(corresponding to the fewest number of memory spills)
and registers.

Aho-Johnson [3] showed that , by using dynamic
programming, optimal code can be generated in lin-
ear time for a wide class of homogeneous register set
architectures. The schedule they proposed is based
on their Strong Normal Form Theorem. One code se-
quence is in SNF if it is formed by a set of code sub-
sequences separated by memory storages, where each
code sub-sequence is determined by a Strongly Con-
tiguous schedule (SC-schedule). One code sequence is
a SC-schedule if it was formed as follows: at every
selected match m, with children subtrees TI and Tz,
continuously schedule the instructions corresponding
to subtree TI followed by the instructions correspond-
ing to T2 and m. Although still used, SC-schedules
are not an effective approach for code generation on
non-homogeneous architectures.
3.1 Problem Definition

The inefficacy of SC-schedules on non-homogeneous
register architectures derives from the fact that on
these architectures the final code sequence is ex-
tremely dependent on the order that subtrees are eval-
uated. Consider for example the IR tree of Fig.2 a).

proposed in Sec.2 and the TMS320C25 ISA. It takes
variables at memory positions mo to m4 and stores the
resulting computation into one variable at memory po-
sition mg, using m5 as temporary storage. The code
sequences generated for three different schedules are
shown in Fig.2. Memory position m7 was used when-
ever a spilling location was required by the scheduler.
For the code of Fig.2(b) the left subtree of each node
was scheduled first followed by its right subtree and
then the instruction corresponding to the node oper-
ation. The opposite approach was used to obtain the

The expression tree was matched using the algorit 6 m

a -> m5
mO

It m l
mPY mO
Pac
s a c l m7
l a c m 3
add m2
s a c l m5
It m4

l a c m7
spac
s a c l m6

mPY m 5

m2 m3

a (a)

It m4
l a c m 3
add m2
s a c l mS
mPY m 5
It m i
Pac
s a c l m7
mPY mO
Pac
It m7
mPkY i
spac
s a c l m6

l a c
add
s a c l
It
mPY
Pac
It
mPY
spac
s a c l

m 3
m2
m 5
m i
mO

m 4
m 5

m6

(b 1 (C> (d)

Figure 2: (a) Matched 1R tree for the TMS320C25;
SC Left-first schedule; (c) SC Right-first schedule;
Optimal schedule

code of Fig.2(c). Notice that neither the SC-schedules
in Fig.2(b) and (c), nor any SC-schedule will ever pro-
duce optimal code. This is obtained using a non-SC
schedule that first schedules the addition m2 +m3 and
then the rest of the tree, as in Fig.2(d). The question
raised by the above example is if there exists a guar-
anteed schedule such that no spilling is required. We
will prove this schedule exist, under certain conditions
that depend exclusively on the ISA of the target pro-
cessor, and that according Aho-Johnson [3] it is a 5°F
schedule.
3.2 Problem Solution

In this section we define the concept of RTG and
show how it can be used to derive sufficient conditions
for optimal code generation for [l, CO] architectures.
Using this result we propose a linear time algorithm
for optimal SNF code scheduling of expression trees
on these architectures and prove its optimality.

Let T be an expression tree with unary and bi-
nary operations. Let L : T ---$ R U M be a func-
tion which maps nodes in T to the set R U M , where
R = {Ti, 1 5 i 5 N } is a set of N registers, and M
the set of memory locations. Let U be the root of
an expression tree, w1 and 02 children of U . Consider
that after allocation is performed registers L(w1) = T I ,

L(v2) = r2 are assigned to 01 and 02 respectively. Let

38

TI and TZ be the subtrees rooted at v1 and vz, as in
Fig.3(a). The following results are valid for arty ex-
pression tree for which at most two operands of each
pattern are from storage locations (the other operands
can be immediate values or indexing registers).

Definition 1 (Allocation Deadlock) We sajy that
an expression tree contains an allocation deadlock i f
the following conditions are true: (a) L(v1) # F (v 2)
and (b) there exist nodes w1 and w2, 201 E TI and
w z E TZ such that L (w1) = L(v2) and L (w z) = L(v1) .
0

The above definition of allocation deadlock can be vi-
sualized in Fig.S(a). As one can see, it is the situation
when two sibling subtrees TI and Tz contain each at
least one node allocated to the same register as the
register assigned to the root of the other sibling tree.
Using this definition i t is possible to propose the fol-
lowing result.
Lemma 1 Let U be any node in expression tree T and
Tu the subtree rooted at U . If T does not have a spill
free schedule then at contains at least one node U f o r
which Tu has an allocation deadlock.

Figure 3: (a) Tree with allocation deadlock; (b) - (d)
Trees without allocation deadlock
Proof. Assume that all nodes U in T are such that
Tu is free of allocation deadlocks and that no valid
schedule exist for T . According to Definition 1 Tu
does not have an allocation deadlock when:

(a) L(w1) = L(v2). This case will not happen since
no non-unary operator of an expression tree takes
its two operands simultaneously from the same
location, unless this location is in memory. In this
case any SC-schedule can be used to schedule Tu.

(b) L(v1) # L(vzb L (w1) = L(v2) , but no node
w2 exist for w ich L(w2) = L(v1) . In thiij case
it is possible to schedule TI first, followed by
Tz and the instruction corresponding to node U
(Fig.S(b)).

(c) L(v1) # L (v z) , L (W Z) = L (v l) , but no node w1
exist for which L(w1) = L(v2) . This is symmetric
to the previous case (see Fig.S(c)).

(d) L(l;il) f ~ (w z) , but no nodes w1 and w2 exist.
This case is trivial, any SC-schedule results in a
valid schedule (Fig.S(d)).

Since the above conditions can be applied to any node
U in T , then T will have a valid schedule that is free
of memory spilling code. This contradicts the initial
assumption. 0

Corollary 1 (Free Schedule) I f f o r all n,odes U i n
T , Tu is free of allocation deadlocks, then T has an
optimal schedule which does not require any memory
spilling. .Moreover this schedule can be determined by
recursively proceeding as follows: fo r each node U in T
schedule first the child v of U f o r which L (v) # L (t) ,
where t is any node contained in the subtree rooted at
the sibling of v .
Proof. :Directly from the lemma above. 0

Definition 2 (RTG) The R T G is a directed labeled
graph where each node represents a location in the
data-path architecture where d a t a can be stored. Each
edge in the R T G from node ri t o node r ' is labeled
after those instructions in the I S A that t a l e operands
f rom location ri and store the result into location r j .
0

The nodes in the RTG are divided into three types:
single register (or simply register) nodes, register files
and mem.ories nodes. Memory nodes (M) and regis-
ter file nodes represent a set of locations of the same
type which can store multiple operands. In the RTG
they are distinguished from register nodes by means
of a double circle. Notice that the RTG is a labeled
graph where each edge has labels corresponding to the
instructicins that require that operation.

Definition 3 (RTG Criterion) Let T I , r2 and r3 be
nodes in a R T G such that: (a) rg has incoming edges
f rom regi!j.ter nodes r1 and r 2 , and these edges have one
common label I ; b) there exists a t least one directed

Criterion is satrsfied i f there exists one memory node
on each cycle between rl and r2 (e.g. Fig.d,(a)).

cycle between no d es r1 and 7 3 . We say that the R T G

Figure 4: (a) RTG that satisfies the RTG Criterion;
(b) TMS320C25 architecture satisfies the RTG crite-
rion

Example 1 Consider, for example, the partial OLIVE
description in Fig.1 for the ISA of the TMS320C25
processor. The RTG of Fig.4(b) was formed from
that description. The numbers in parenthesis on the
right side of Fig.1 are used to label each edge of the
graph. Notice that only registers a and p are desti-
nations of instructions which take two other locations
as operands. Since all cycles between these locations
contain Ad we can say that the TMS320C25 architec-

0 ture satisfies the RTG Criterion.

Theorem 1 (RTG Theorem) If an I S A satisfies
the R T G Criterion then fo r any expression tree there
exists a schedule that is free of memory spills.

39

‘3 In its first pass, represented by procedure Get Usage
(Fig.6) the algorithm does a preorder traversal of
the tree. At each node U two sets are computed:
memse t (u) and regset(u) . Set m e m s e t (u) contains
pointers to those nodes inside TI and T2 which were
allocated to M and that have no other node allocated
to M on its path to U (e.g. node is p z in Fig.5). Set
regset(u) keeps the names of registers which were al-
located to nodes into subtrees Q1 and Qz.

Figure 5: The RTG Theorem

Proof. Let T be an expression tree rooted at U , and
zl l and w2 its children, such that L(u) = r3, L (q) = r1
and L(wz) = rz. Let T1 and Tz be the subtrees rooted
at nodes z11 and 212. Let 4 , k = 1 , 2 , . . .) be subtrees
of T with root pk for which t 6 e result of operation pk
is stored into memory (i.e. L (p k) = M) . Define Qi
(i = 1 ,2) (dark areas in Fig.5) as the subtrees formed
in after removing all nodes from subtrees 4 . w e
will show that if the RTG Criterion is satisfied an op-
timal schedule can always be determined by properly
ordering the schedules for PI - P4 and Q1- Qz. Here
we have to address two cases: (a) If 7-3 corresponds to
a RTG node for which no allocation deadlock can pos-
sibly occur (conditions (a) or b) from Definition 3 not

determined in Corollary 1; (b Now consider that 7-3

deadlock is possible, as in Fig.4(a). One can see from
there and Fig.5 that if the RTG Criterion is satisfied
then for each node in T2 allocated to T I , e.g. w2, the
path that goes from w2 t o its ancestor v2 (allocated to
r2) will necessarily pass by a node allocated to M , i.e.
p z . Notice that one can recursively schedule subtrees
Pz and P4 in Tz for which the root was allocated to
memory, what corresponds to emitting in advance all
instructions that store results in r l . Once this is done
only memory locations are live and the remaining sub-
tree Qz contains no instruction that uses T I . Therefore
the tree TI U Q 2 can now be scheduled using Corollary
1 and no spill will be required.

Notice that the same result can be obtained if one
first reciirsively schedule all subtrees PI - P4 (white
areas in Fig.5) followed by applying Corollary 1 to

U

satisfied) then T can be sche 6 uled using the schedule

corresponds to a RTG node 2 or which an allocation

schedule subtree Q1 U 9 2 U { U } .

3.2.1 Optimal Scheduling Algorithm

In the following we present OptSchedule (Fig.6) a two
pass O(n) algorithm based on the proof of Theorem 1.
The algorithm , takes an optimaly allocated expression
tree resulting from the approach described in Sec.2
and produces spill free code.

GetUsage (U)

begin
memset(u) = 4;
regset(u) = 4;
if match(u) is not memory

regset(u) = match(u);
foreach v in children(u)

Get Usage (v) ;
if match(v) is memory

else
memset(u) = memset(u) U {v);

memset(u) = memset(u) U memset(v);
regset(u) = regset(u) U regset(v);

endif;
endfor;

end

OptSchedule (U)

begin
foreach p in memset(u)

foreach v in children(u)

emit (u) ;

Opt Schedule(p) ;

FreeSchedule(v);

end

Freeschedule (U)

begin
if match(u) is ’ memory

if U is not a leaf
return;

VI = unique(children(u));
foreach w in children(v1)

FreeSchedule(w);
endif
emit (U);

end

Figure 6: First pass: Getusage; Second pass:
OptSchedule and Freeschedule

In the second pass OptSchedule executes a series of
two tasks. First, for all p E m e m s e t (u) OplSchedde
recursively schedules all subtrees rooted at p . These

40

Table 2: Number of cycles to compute expression
trees using: Right-Left (RL), Left-Right (LR) and
Optschedule (OS)

subtrees are P k (k = 1 , 2 , . . .) and correspond to the
blank areas inside TI and T2 in Fig.5. Once this is
finished, different memory positions are live but not
conflicting, and subtrees TI and T2 are reduced to Q1
and 9 2 respectively. Second, procedure FreeSchedule
(Fig.6) (the implementation of the proof of Corollary
1) traverses the subject tree in preorder. At each node
it uses function unique to determine the child of U , say
V I , whose match(w1) is a register that is not present
in the regset of the other child of U . The existence of
w1 is guaranteed, as it was shown in Theorem 1. Once
w 1 is determined, the algorithm schedules its subtree
Q1 followed by &z and U .

Theorem 2 Algorathm Optschedule as optamal and
has runnzng tame O(n) , where n 2s the number of nodes
an the subject tree T .
Proof. The first part is trivial since OptScheduie im-
plements the proof of Theorem 1. Also from Thtxorem
1 one can see that the algorithm touches every node
in T only once. Hence the algorithm running time is
O(n) . 0

4 Results
The proposed approach was applied to some expres-

sion trees which were extracted from the IR form of
a set of programs. In Tab.2 trees from 1 to 4 can be
found in DSP-kernel programs of the DSPstone bench-
mark [SI. Trees from 5 to 10 were extracted fromi a set
of programs used to implement signal processing and
speech encoding/decoding in a cellular telephone unit.

The metric used to compare the code was the num-
ber of cycles that takes to compute the expression
tree in the target processor. This is possible since
we are not considering Instructaon Level Parallelasm
(ILP) here. From Tab.2 one can see that algorithm
Optschedule (OS) produces the best code when com-
pared with two SC-schedules, what was expected since
we have proved its optimality. Notice that although
SC-schedules can occasionally produce optimal code,
it can also generate bad quality code as it is th(.. 3 case
for expression tree 9. Also notice that numbers in
Tab.2 do not take into consideration the cost of the
instructions required to compute the address of vari-
ables in memory. Minimizing this cost is a problem

known as offsei assignment, which can be efficiently
solved using the technique proposed in [lo].

5 Conclusion and Future Work
We hawe proposed an optimal instruction selec-

tion, register allocation and instruction scheduling al-
gorithm for a class of non-homogeneous architectures
that satisfy the [l,co] Model and the RTG Criterion
that we define. We have shown that the RTG is a
model that can be effectively used to improve the un-
derstanding of the interaction between the ISA design
and the code-generation task. The target architec-
ture was described using OLIVE, an efficient and eas-
ily retargetable code-generator generator. Currently
we have been working on the a generalization of this
approach to a broad architecture model, the [N (M)]
Model, where N classes of registers with M registers
are availa,ble.

References
[l] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers,

Pranciples, Technzques and Tools. Addison Wesley,
Boston, 1988.

[a] M.R. Garey and D.S. Johnson. Computers and In-
tracttrbzlaty. W. H. Freeman and Company, New York,
1979.

A.V. Aho and S.C. Johnson. Optimal code generation
for expression trees. Journal of the ACM, 23(3):488-
501, July 1976.

B. Wess. Automatic instruction code generation based
on trellis diagrams. In Proc. Int. Conf. Cwcuzts and
Systems, volume 2, pages 645-648, 1992.

A.V. Aho, M. Ganapathi, and S.W.K Tjiang. Code
generation using tree matching and dynamic pro-
gramming. ACM Trans. Prog. Lang. and Systems,
11(4):491-516, October 1989.

C.W. Fraser, D.R. Hanson, and T.A. Proebsting. En-
ginee~ing a sample, efficient code generator. Journal
of the ACM, 22(12):248-262, March 1993.

Tjiang S.W.K. An olive twig. Technical report, Syn-
opsys Inc., 1993.

R. Sethi and J.D. Ullman. The generation of optimal
code for arithmetic expressions. Journal of the ACM,
17(4):715-728, October 1970.

V. Zivojnovic, J.M. Velarde, and C. Scllger. DSP-
stone, a DSP benchmarking methodology. Techni-
cal report, Aachen University of Thecnology, August
1994.

Liao S.Y., Devadas S., Keutzer K., Tjiang S., and
Wane; A. Storage assignment to decrease code size.
Accepted for publication in 1995 ACM Conference on
Progi amming Language Design and Implementation.

41

