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Abstract 
This paper examines the problem of code-generation 

for  expression trees on non-homogeneous register set 
architectures. It proposes and proves the optimality o f  
an O(n)  algorithm for  the tasks of instruction selec- 
t ion,  register allocation and scheduling on a class of 
architectures defined as the [l, CO] Model. Optimality 
is  guaranteed b y  suficient conditions derived from the 
Register Transfer Graph ( R T G  , a structural represen- 

the processor Instruction Set Architecture (ISA).  Ex- 
perimental results uszng the TMS32OC25 as the target 
processor show the eficacy o f  the approach. 

tation o f  the architecture whic R depends exclusively on 

1 Introduction 
Non-homogeneous register architectures are fre- 

quently encountered in Application Specific Instruc- 
tion Set Processors (ASIPs). These processors usually 
have a set of very specialized functional units, and as- 
sociated registers, that are used to efficiently imple- 
ment operations with hard performance requirements 
which frequently occur in the application domain of 
the processor. Examples of these type of units are: 
Multiply and Accumulate Units (MAC) and Address 
Calculation Units (ACU). At the same time, the per- 
formance and area constraints on the design of ASIP 
commonly result in data-paths with restricted connec- 
tivity. This specialization is reflected in the Instruc- 
tion Set Architecture (ISA) design of these proces- 
sors which typically have very specialized instructions 
that take operands and store the resulting computa- 
tion into well defined registers. As a result, limited 
freedom is available to the code-generation algorithm. 

The class of non-homogeneous architectures this 
paper refers to will be called the [l, CO] Model. This is 
a subset of the memory-register architectures in which 
only one or an infinite amount (memory) of a partic- 
ular storage resource type (from now on called loca- 

bination of processor instructions which can opti- 
mally implement the operations in the basic block DZ- 
red Acyclic Graph (DAG) representation. This task, 
called instruction selection, is equivalent to  the DAG- 
covering problem, which is known to be NP-complete 
[2]. An approach to ease the problem is to  split 
the DAG into expression trees and to perform tree- 
covering on each tree separately. 

Code-generation for expression trees can be divided 
into three individual problems: instruction selection, 
register allocation and scheduling. In this paper we 
propose an optima1 two phase algorithm which per- 
forms instruction selection, register allocation and in- 
struction scheduling for an expression tree in polyno- 
mial time, under the following constraints: 
target processor should fit the [1,00] Model; % 
ISA of the processor must satisfy an (easy!) optimal- 
ity criterion that we will define later. The first pass of 
the algorithm, described in Sec.2, performs instruction 
selection and register allocation simultaneously, using 
a variation of the Aho-Johnson algorithm [3] that we 
extend for non-homogeneous architectures using tree- 
grammar parsing. The second pass, described in Sec.3, 
is an O(n)  algorithm that takes an optimally covered 
expression tree and schedules instructions such that 
no memory spills are required. The algorithm we pro- 
pose for this phase uses the concept of Register Trans- 
fer  Graph (RTG) that we define. We also provide a 
criterion, based on the RTG that enables the ASIP 
designer to verify, using exclusively the ISA of the tar- 
get architecture, if the code resulting from scheduling 
trees on its ISA has the potential to be optimal. 

Section Sec.4 contains results of applying the algo- 
rithm to some expression trees extracted from DSP 
benchmarks. Finally, in Section Sec.5 we summarize 
our major contributions and provide directions on how 
this work can be extended. 

t ions) is available. A notorious instance of this class 
is the TMS320C25 processor which will be considered 
the target architecture for the rest of this DaDer. 

2 Optimal Instruction Selection and 
Regist er Allocation 

One-of the main problems in generatiig'code for 
programs basic blocks [l] is to select the best com- 
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Algorithms for instruction selection are usually 
based on pattern matching techniques [l]. Another 
equally effective approach is to  use trellis diagrams 
[4]. The method we will describe below is based on 
tree pattern matching and aims to  provide easy and 
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fast retargetability. 
In the context of code generation, tree-covering of 

an expression tree is a pattern matching task in which 
instructions of the target processor are represented us- 
ing IR tree-patterns [I]. Each pattern has an associ- 
ated cost which reflects the number of execution cycles 
that the instruction corresponding to the patterin will 
take to  execute. The tree-covering task is the prob- 
lem of covering the expression tree with a set of pat- 
terns such that their total number of execution cycles 
is minimized. 

In homogeneous register architectures the selection 
of an instruction has no connection whatsoever with 
the types of registers that the instruction uses. Select- 
ing instructions for non-homogeneous register (archi- 
tectures usually requires allocating register types for 
the operands and resulting data. As a consequence, 
the IR patterns associated with instructions in this 
kind of processor should carry information regaxding 
the type of register the instruction uses. Furthermore, 
the strong binding between instructions and the regis- 
ter types they use suggests that instruction selection 
and register allocation are two tasks that should be 
performed together. 

- 
Table 1: Partial ISA of the TMS320C25 processor 

Consider, for example, the IR patterns in Tab.1 
corresponding to a subset of the instructions in the 
TMS320C25 ISA. In Tab.1 each instruction has a,ssoci- 
ated with it a tree-pattern whose nodes are composed 
of operations (PLUS,MINUS,MUL), registers 
constants (CONST) and memory reference (m$?'%? 
tice that each instruction implicitly defines the reg- 
isters it uses. For example, the instruction apac can 
only take its operands from registers a and p ,  and al- 
ways computes the result back into a. Transference 
instructions like pac (transfer data from p to  a )  can 
also be represented this way by using only the source 
register as the IR pattern. 
2.1 Problem Definition 

The problem we address here is the problem of de- 
termining the best cover of the expression tree such 
that the cost of each pattern match depends not only 
on the number of cycles of the associated instruction, 
but also on the number of cycles required to  move its 
operands from the location they currently are 'to the 
location where the instruction requires them to be. 

2.2 Problem Solution 
Tree-grammar parsers have been used as a way to  

implement code-generators [5] [SI. They combine dy- 
namic programming and efficient tree-pattern match- 
ing algorithms for optimal instruction selection. Tools 
for automatic generation of code-generators based on 
tree-grammars parsing [5][6][7] are an effective way to  
provide fast retargetability. This is extremely desir- 
able for the design process that involves ASIPs, since 
typically several possible architectures will be evalu- 
ated before one is selected. Based on these obser- 
vations we have implemented our instruction selec- 
tion/register allocation algorithm using OLIVE [7], a 
simple, fast and easy-to-use code-generator generator. 
OLIVE takes as input a set of grammar rules, where 
tree pattlerns are described in a prefixed linearized 
form, similar to the notation used in Tab.1. Sim- 
ilarly as rammar description for programming lan- 
guages [I!, tree-grammars are formed by terminals 
and non-terminals, which are called grammar sym- 
bols. Register allocation is specified by assigning one 
grammar non-terminal for each location in the archi- 
tecture where data can be stored. When this is done 
the OLIVlE rules assume the following formah: 

where: 
locatcon : pattern {cost} = {action}; 

1. locataon is a non-terminal node representing a 
storage resource where the instruction result 
should be stored; 

2. pattern is an IR tree corresponding to  a processor 
instruction, containing grammar terminals and 
non-terminals; 

3. cost is a piece of code that computes the cost of 
matching a subtree of the expression tree using 
pattern; 

4. actzon is another piece of code used to  emit the 
instruction corresponding to  pattern. 

Considier, for example, the OLIVE description for 
the TMS320C25 architecture (Fig.l) obtained from 
the IR patterns of Tab.1. Notice that non-terminals 
are represented by lowercase letters and terminals by 
capital letters. Rules 1 to  3 and 4 to  5 correspond 

a : PLUI;(a,m) €3 = €3; (1) add m 
a : PLUS(a,p) €3 = € 3 ;  ( 2 )  apac 
a : MINLlS(a,p) €3 = €3; ( 3 )  spac 
p : MUL(:m,t) €3 = €3; (4) mpy m 
p : MUL(:t,CONST) = €3; (5) mpky k 
a : CONST €3 = €3;  (6) lack k 
a : p  €1 = €3; (7) pac 
m : a  €3 = €3; (8) s a d  m 
a : m  €3 = €3; (9) l ac  m 
t : m  €3 = €1; (10) It m 

Figure 1: Partial OLIVE specification of the 
TMS320C25 processor (instruction numbers and 
names on the right are not part of the specification) 

to instructions that take two operands and. store the 
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final result in a particular register ( a  and p respec- 
tively). Rule 6 describes an immediate load into reg- 
ister a. Rules 7 to  10 are associated to data trans- 
ference instructions and play an important role in the 
implementation of the proposed algorithm since they 
are responsible for bringing the cost of moving data 
through the data path into the total cost of a match. 
We should point out that ,  for sake of simplicity, we 
did not represent in Fig. 1 all patterns corresponding 
to  commutative operations, although we will assume 
their existence whenever required. 

If we do not consider instruction scheduling and 
its associated spills at this point, then the algorithm 
proposed above is optimal (refer to [3] for proof). 

3 Scheduling 
Optimal instruction selection and register alloca- 

tion for an expression tree is not enough to produce 
optimal code. For optimal code the instructions must 
be scheduled in such a way that no additional mem- 
ory spills are introduced. Optimal algorithms exist for 
the scheduling problem for the class of homogeneous 
register architectures [8][3]. 

The Sethi-Ullman [8] algorithm optimaly schedules 
instructions using a two pass approach. The result- 
ing code has the least possible number of instructions 
(corresponding to the fewest number of memory spills) 
and registers. 

Aho-Johnson [3] showed that ,  by using dynamic 
programming, optimal code can be generated in lin- 
ear time for a wide class of homogeneous register set 
architectures. The schedule they proposed is based 
on their Strong Normal Form Theorem. One code se- 
quence is in SNF if it is formed by a set of code sub- 
sequences separated by memory storages, where each 
code sub-sequence is determined by a Strongly Con- 
tiguous schedule (SC-schedule). One code sequence is 
a SC-schedule if it was formed as follows: at every 
selected match m, with children subtrees TI and Tz, 
continuously schedule the instructions corresponding 
to  subtree TI followed by the instructions correspond- 
ing to  T2 and m. Although still used, SC-schedules 
are not an effective approach for code generation on 
non-homogeneous architectures. 
3.1 Problem Definition 

The inefficacy of SC-schedules on non-homogeneous 
register architectures derives from the fact that on 
these architectures the final code sequence is ex- 
tremely dependent on the order that subtrees are eval- 
uated. Consider for example the IR tree of Fig.2 a). 

proposed in Sec.2 and the TMS320C25 ISA. It takes 
variables at memory positions mo to m4 and stores the 
resulting computation into one variable at memory po- 
sition mg, using m5 as temporary storage. The code 
sequences generated for three different schedules are 
shown in Fig.2. Memory position m7 was used when- 
ever a spilling location was required by the scheduler. 
For the code of Fig.2(b) the left subtree of each node 
was scheduled first followed by its right subtree and 
then the instruction corresponding to the node oper- 
ation. The opposite approach was used to obtain the 

The expression tree was matched using the algorit 6 m 

a -> m5 
mO 

It m l  
mPY mO 
Pac 
s a c l  m7 
l a c  m 3  
add m2 
s a c l  m5 
It m4 

l a c  m7 
spac 
s a c l  m6 

mPY m 5  

m2 m3 

a (a) 

It m4 
l a c  m 3  
add m2 
s a c l  mS 
mPY m 5  
It m i  
Pac 
s a c l  m7 
mPY mO 
Pac 
It m7 
mPkY i 
spac 
s a c l  m6 

l a c  
add 
s a c l  
It 
mPY 
Pac 
It 
mPY 
spac 
s a c l  

m 3  
m2 
m 5  
m i  
mO 

m 4  
m 5  

m6 

(b 1 (C> (d) 

Figure 2: (a) Matched 1R tree for the TMS320C25; 
SC Left-first schedule; (c) SC Right-first schedule; 
Optimal schedule 

code of Fig.2(c). Notice that neither the SC-schedules 
in Fig.2(b) and (c),  nor any SC-schedule will ever pro- 
duce optimal code. This is obtained using a non-SC 
schedule that first schedules the addition m2 +m3 and 
then the rest of the tree, as in Fig.2(d). The question 
raised by the above example is if there exists a guar- 
anteed schedule such that no spilling is required. We 
will prove this schedule exist, under certain conditions 
that depend exclusively on the ISA of the target pro- 
cessor, and that according Aho-Johnson [3] it is a 5°F 
schedule. 
3.2 Problem Solution 

In this section we define the concept of RTG and 
show how it can be used to  derive sufficient conditions 
for optimal code generation for [l, CO] architectures. 
Using this result we propose a linear time algorithm 
for optimal SNF code scheduling of expression trees 
on these architectures and prove its optimality. 

Let T be an expression tree with unary and bi- 
nary operations. Let L : T ---$ R U M be a func- 
tion which maps nodes in T to  the set R U M ,  where 
R = {Ti, 1 5 i 5 N }  is a set of N registers, and M 
the set of memory locations. Let U be the root of 
an expression tree, w1 and 02 children of U .  Consider 
that after allocation is performed registers L(w1) = T I ,  

L(v2) = r2 are assigned to  01 and 02 respectively. Let 
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TI and TZ be the subtrees rooted at v1 and vz, as in 
Fig.3(a). The following results are valid for arty ex- 
pression tree for which at  most two operands of each 
pattern are from storage locations (the other operands 
can be immediate values or indexing registers). 

Definition 1 (Allocation Deadlock) We sajy that 
an expression tree contains an allocation deadlock i f  
the following conditions are true: (a)  L(v1)  # F ( v 2 )  
and (b)  there exist nodes w1 and w2, 201 E TI and 
w z  E TZ such that L (w1)  = L(v2)  and L ( w z )  = L(v1) .  
0 

The above definition of allocation deadlock can be vi- 
sualized in Fig.S(a). As one can see, it is the situation 
when two sibling subtrees TI and Tz contain each at 
least one node allocated to the same register as the 
register assigned to  the root of the other sibling tree. 
Using this definition i t  is possible to propose the fol- 
lowing result. 
Lemma 1 Let U be any node  in expression tree T and 
Tu the subtree rooted at U .  If T does not have a spill 
free schedule then at contains at  least one node U f o r  
which Tu has an allocation deadlock. 

Figure 3: (a) Tree with allocation deadlock; (b) - (d) 
Trees without allocation deadlock 
Proof. Assume that all nodes U in T are such that 
Tu is free of allocation deadlocks and that no valid 
schedule exist for T .  According to Definition 1 Tu 
does not have an allocation deadlock when: 

(a) L(w1) = L(v2). This case will not happen since 
no non-unary operator of an expression tree takes 
its two operands simultaneously from the same 
location, unless this location is in memory. In this 
case any SC-schedule can be used to schedule Tu. 

(b) L(v1) # L(vzb  L (w1)  = L(v2) ,  but no node 
w2 exist for w ich L(w2)  = L(v1) .  In thiij case 
it is possible to schedule TI first, followed by 
Tz and the instruction corresponding to node U 
(Fig.S(b)). 

(c) L(v1) # L ( v z ) ,  L ( W Z )  = L ( v l ) ,  but no node w1 
exist for which L(w1)  = L(v2) .  This is symmetric 
to the previous case (see Fig.S(c)). 

(d) L(l;il) f ~ ( w z ) ,  but no nodes w1 and w2 exist. 
This case is trivial, any SC-schedule results in a 
valid schedule (Fig.S(d)). 

Since the above conditions can be applied to any node 
U in T ,  then T will have a valid schedule that is free 
of memory spilling code. This contradicts the initial 
assumption. 0 

Corollary 1 (Free Schedule) I f f o r  all n,odes U i n  
T ,  Tu is free of allocation deadlocks, then T has an 
optimal schedule which does not require any memory 
spilling. .Moreover this schedule can be determined by 
recursively proceeding as follows: fo r  each node U in T 
schedule first the child v of U f o r  which L ( v )  # L ( t ) ,  
where t is any node contained in  the subtree rooted at 
the sibling of v .  
Proof. :Directly from the lemma above. 0 

Definition 2 (RTG) The R T G  is a directed labeled 
graph where each node represents a location in  the 
data-path architecture where d a t a  can be stored. Each 
edge in the R T G  from node ri t o  node r '  is labeled 
after those instructions in the I S A  that t a l e  operands 
f rom location ri and store the result into location r j .  
0 

The nodes in the RTG are divided into three types: 
single register (or simply register) nodes, register files 
and mem.ories nodes. Memory nodes ( M )  and regis- 
ter file nodes represent a set of locations of the same 
type which can store multiple operands. In the RTG 
they are distinguished from register nodes by means 
of a double circle. Notice that the RTG is a labeled 
graph where each edge has labels corresponding to  the 
instructicins that require that operation. 

Definition 3 (RTG Criterion) Let T I ,  r2 and r3 be 
nodes in a R T G  such that: ( a )  rg has incoming edges 
f rom regi!j.ter nodes r1 and r 2 ,  and these edges have one 
common label I ;  b) there exists a t  least one directed 

Criterion is satrsfied i f  there exists one memory node 
on each cycle between rl  and r2 (e.g. Fig.d,(a)). 

cycle between no d es r1 and 7 3 .  We say that the R T G  

Figure 4: (a) RTG that satisfies the RTG Criterion; 
(b) TMS320C25 architecture satisfies the RTG crite- 
rion 

Example 1 Consider, for example, the partial OLIVE 
description in Fig.1 for the ISA of the TMS320C25 
processor. The RTG of Fig.4(b) was formed from 
that description. The numbers in parenthesis on the 
right side of Fig.1 are used to  label each edge of the 
graph. Notice that only registers a and p are desti- 
nations of instructions which take two other locations 
as operands. Since all cycles between these locations 
contain Ad we can say that the TMS320C25 architec- 

0 ture satisfies the RTG Criterion. 

Theorem 1 (RTG Theorem) If  an I S A  satisfies 
the R T G  Criterion then fo r  any expression tree there 
exists a schedule that is  free of memory spills. 
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‘3 In its first pass, represented by procedure Get Usage 
(Fig.6) the algorithm does a preorder traversal of 
the tree. At each node U two sets are computed: 
memse t (u )  and regset(u) .  Set m e m s e t ( u )  contains 
pointers to those nodes inside TI and T2 which were 
allocated to M and that have no other node allocated 
to M on its path to  U (e.g. node is p z  in Fig.5). Set 
regset(u)  keeps the names of registers which were al- 
located to nodes into subtrees Q1 and Qz. 

Figure 5: The RTG Theorem 

Proof. Let T be an expression tree rooted at  U ,  and 
zl l  and w2 its children, such that L(u)  = r3, L ( q )  = r1 
and L(wz) = rz. Let T1 and Tz be the subtrees rooted 
at nodes z11 and 212. Let 4 ,  k = 1 , 2 , .  . .) be subtrees 
of T with root pk for which t 6 e result of operation pk 
is stored into memory (i.e. L ( p k )  = M ) .  Define Qi 
(i = 1 ,2 )  (dark areas in Fig.5) as the subtrees formed 
in after removing all nodes from subtrees 4 .  w e  
will show that if the RTG Criterion is satisfied an op- 
timal schedule can always be determined by properly 
ordering the schedules for PI - P4 and Q1- Qz. Here 
we have to address two cases: (a) If 7-3 corresponds to 
a RTG node for which no allocation deadlock can pos- 
sibly occur (conditions (a) or b) from Definition 3 not 

determined in Corollary 1; (b Now consider that  7-3 

deadlock is possible, as in Fig.4(a). One can see from 
there and Fig.5 that  if the RTG Criterion is satisfied 
then for each node in T2 allocated to T I ,  e.g. w2, the 
path that  goes from w2 t o  its ancestor v2 (allocated to  
r2) will necessarily pass by a node allocated to M ,  i.e. 
p z .  Notice that one can recursively schedule subtrees 
Pz and P4 in Tz for which the root was allocated to 
memory, what corresponds to emitting in advance all 
instructions that store results in r l .  Once this is done 
only memory locations are live and the remaining sub- 
tree Qz contains no instruction that uses T I .  Therefore 
the tree TI U Q 2  can now be scheduled using Corollary 
1 and no spill will be required. 

Notice that the same result can be obtained if one 
first reciirsively schedule all subtrees PI - P4 (white 
areas in Fig.5) followed by applying Corollary 1 to 

U 

satisfied) then T can be sche 6 uled using the schedule 

corresponds to  a RTG node 2 or which an allocation 

schedule subtree Q1 U 9 2  U { U } .  

3.2.1 Optimal Scheduling Algorithm 

In the following we present OptSchedule (Fig.6) a two 
pass O(n)  algorithm based on the proof of Theorem 1. 
The  algorithm , takes an optimaly allocated expression 
tree resulting from the approach described in Sec.2 
and produces spill free code. 

GetUsage (U)  

begin 
memset(u) = 4; 
regset(u) = 4;  
if match(u) is not memory 

regset(u) = match(u); 
foreach v in children(u) 

Get Usage (v) ; 
if match(v) is memory 

else 
memset(u) = memset(u) U {v); 

memset(u) = memset(u) U memset(v); 
regset(u) = regset(u) U regset(v); 

endif; 
endfor; 

end 

OptSchedule (U) 

begin 
foreach p in memset(u) 

foreach v in children(u) 

emit (u) ; 

Opt Schedule( p) ; 

FreeSchedule(v); 

end 

Freeschedule (U)  

begin 
if match(u) is ’ memory 

if U is not a leaf 
return; 

VI = unique(children(u)); 
foreach w in children(v1) 

FreeSchedule(w); 
endif 
emit (U); 

end 

Figure 6: First pass: Getusage; Second pass: 
OptSchedule and Freeschedule 

In the second pass OptSchedule executes a series of 
two tasks. First, for all p E m e m s e t ( u )  OplSchedde 
recursively schedules all subtrees rooted at p .  These 
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Table 2: Number of cycles to  compute expression 
trees using: Right-Left (RL), Left-Right (LR) and 
Optschedule (OS) 

subtrees are P k  ( k  = 1 , 2 , .  . .) and correspond to the 
blank areas inside TI and T2 in Fig.5. Once this is 
finished, different memory positions are live but not 
conflicting, and subtrees TI and T2 are reduced to Q1 
and 9 2  respectively. Second, procedure FreeSchedule 
(Fig.6) (the implementation of the proof of Corollary 
1) traverses the subject tree in preorder. At each node 
it uses function unique to determine the child of U ,  say 
V I ,  whose match(w1) is a register that is not present 
in the regset of the other child of U .  The existence of 
w1 is guaranteed, as it was shown in Theorem 1. Once 
w 1  is determined, the algorithm schedules its subtree 
Q1 followed by &z  and U .  

Theorem 2 Algorathm Optschedule  as optamal and 
has runnzng tame O(n) ,  where n 2s the number of nodes 
an the subject tree T .  
Proof. The first part is trivial since OptScheduie im- 
plements the proof of Theorem 1. Also from Thtxorem 
1 one can see that the algorithm touches every node 
in T only once. Hence the algorithm running time is 
O(n) .  0 

4 Results 
The proposed approach was applied to  some expres- 

sion trees which were extracted from the IR form of 
a set of programs. In Tab.2 trees from 1 to 4 can be 
found in DSP-kernel programs of the DSPstone bench- 
mark [SI. Trees from 5 to 10 were extracted fromi a set 
of programs used to  implement signal processing and 
speech encoding/decoding in a cellular telephone unit. 

The metric used to compare the code was the num- 
ber of cycles that takes to  compute the expression 
tree in the target processor. This is possible since 
we are not considering Instructaon Level Parallelasm 
(ILP) here. From Tab.2 one can see that algorithm 
Optschedule (OS) produces the best code when com- 
pared with two SC-schedules, what was expected since 
we have proved its optimality. Notice that although 
SC-schedules can occasionally produce optimal code, 
it can also generate bad quality code as it is th(.. 3 case 
for expression tree 9. Also notice that numbers in 
Tab.2 do not take into consideration the cost of the 
instructions required to  compute the address of vari- 
ables in memory. Minimizing this cost is a problem 

known as offsei assignment, which can be efficiently 
solved using the technique proposed in [lo]. 

5 Conclusion and Future Work 
We hawe proposed an optimal instruction selec- 

tion, register allocation and instruction scheduling al- 
gorithm for a class of non-homogeneous architectures 
that satisfy the [l,co] Model and the RTG Criterion 
that we define. We have shown that the RTG is a 
model that can be effectively used to  improve the un- 
derstanding of the interaction between the ISA design 
and the code-generation task. The target architec- 
ture was described using OLIVE, an efficient and eas- 
ily retargetable code-generator generator. Currently 
we have been working on the a generalization of this 
approach to a broad architecture model, the [ N ( M ) ]  
Model, where N classes of registers with M registers 
are availa,ble. 
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