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ABSTRACT

The rapid increase in the development of new VLSI structures indicates that the most cost effective way to
design semiconductor devices is using numerical simulation based on sophisticated bi or three-dimensional models.
In this paper we detail the solution of the bi-dimensional Poisson equation applied to a MOSFET in thermal
equilibrium. This problem, although quite simple, can give detailed information about the operation of sub-micron
devices in certain conditions, and serves as a good introduction to the study of the dimensional effects in the
operation of semiconductor structures. We obtain numerical results and establish some comparisons between devices
with channels length of 5.Ojim and 1.0jrn.

2. INTRODUCTION

The technological process used in the design ofsemiconductor devices has been traditionally based on experimental
techniques. In a general manner, the design of the device begins with a poor analytical approach to the device
structure. After that, a great number of interation steps in fabrication, characterization and redesign is executed,
until an adequate performance for the device is obtained. Once the design goal is obtained, some design-rnles are
derived for use in the design of future devices.

With the advent of new and more complex VLSI devices, the number of design/fabrication interation steps
increased in such a way, that the traditional design process became expensive and time consuming. In the last few
years a new methodology, based on numerical simulation of sophisticated physical models, has been proved to be a
reliable and inexpensive solution for this problem.

In the development of a new CMOS device, for example, the fabrication and characterization steps of a real
experiment could take weeks or even months. In the other hand, the numerical simulation of this process, takes only
some hours or days. Some authors estimate a final cost reduction of 40%, if it is used numerical simulation during
the complete design1 . A great number of software packages using simulation techniques for semiconductor devices
has been developed. We mention, for example, SUPREM2 used in simulation of fabrication steps and MINIMOS3,
FIELDAY4, for the simulation of device operation. The device operation simulation programs use, in different ways,
simulation techniques based on the early semiconductors simulation papers by Gummel5, De Man6, Sharffeter7,
Mock8, and others.

In this article we describe with details, the bi-dimensional solution of the Poisson equation in thermal equilibrium
MOSFET, trying to focus the dimensional effects in the electrical potential distribution t1i, resulting from the drastic
reduction of the device channel length.

We begin in Sec.3 describing the determination of a bi-dimensional profile produced by implantation and diffusion
of dopants in the drain and source rcgions. In Sec.4 we derive the discretization of Poisson equation, using finite-
difference techniques, and we formulate the discretized boundary conditions. In Sec.5 we describe the numerical
treatment, and in Sec.6 we present two simulation examples.

3. BI-DIMESIONAL DOPING PROFILE

Generally, the doping process used in the fabrication of a semiconductor device is based on a sequence of im-
plantation and drive-in steps. The determination ofan analytical solution for a bi-diinciisional doping profile can be
obtai ned by solving the diffusionequation.
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In (1), t is the diffusion time, D is the diffusion coeffIcient in the diffusion temperature, and I(x, y, i), the doping
distribution of the implanted dopants during diffusion. For the solution of (1) in an inert environment, we suppose
that no inter-diffusion of dopants occur in the semiconductor surface:

= (2)0y =0
A first approach solution of (1) may be obtained approximating the implant profile by a unit impulse function:

I(x',y',O) = i5(x',y') (3)
The solution of (1) in the domain x E [—oo, +oo], y E [0, +oo}, with initial condition (3) and boundary condition

(2), is a classical result9:

1 ( (x_xl)2\ I I (y—y')2I5(x, y, t) ;: ii-: exp
— 4Th ) [exp — 4Dt

+exp (_)2)] (4)

Using (4), the solution of (1) for an arbitrary initial condition Io(x',y',O) can be obtained using convolution:

f+oo ç+cx
I(x,y,i) = J I Io(x',y',O).15(x,y,t) dx'dy' (5)0 —00

Consider now a Gaussian distribution with no lateral spreading, as a reasonable approximation for the initial
implanted profile. The implantation done on a silicon surface, through an infinite mask which edge is positioned at
x= a:

(0 x<a
Io(x1'O) I1flILX e (_()2 >axp 2c

In the above function 'mar 5 the maximum concentration, 14 is the implant projected range, o, is the standard
deviation. Substituting this function into (5) we obtain, after some algebra, an analytical bi-dimensional profile, re-
suIting from a drive-in diffusion ofa Gaussian distribution in the semiconductor. This approach was first investigated
by Lee'°, who refined it after taking in account lateral spread".

maxI(x,y,i) = (6)

where,

J(x,t) = 7!_-.erfc () (7)

I(y,i) = f2(y,t) + 1(—y,t) (8)

Q flDtir I °(y,1) =
'i/2Dt 2erfc T,V2Dt + V4DI(2D1 + c;j

I (y11)2\
exP_._2:D) (9)
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We note that the final distribution (6) is a product of two uncoupled distributions, a vertical profile 1y and a
lateral profile I,. The Equation (6) was implemented numerically, using a numerical approximation to the function
erfc, and a polinomial approximation to estimate J% and a, as a function of the implanting energy'2. The diffusion
coefficient D is determined using Arrhenius formulation.

4. DISCRETIZATION OF POISSON EQUATION

The classical Poisson equation relates the divergence of the electrical field vector F to the charge density p:

divE= (10)

,where e is the electrical permittivity. The model we use for MOSFET device in this section assumes some appro—
ximations, which permit the solution of the Poisson equation, with a good accuracy. These approximations are
parabolic band structure with nondegenerate semiconductor, which permits the carrier densities n and p to be derived
in thermal equilibrium conditions by Boltzmann statistics.

In order to simplify the numerical problem, let us take the fermi-levelpotential as the electrical potential reference,
and normalize the problem variables. The potential is normalized6 by the thermal voltage (kT/q), the charge density
by the electron charge q, and the carrierdensity by the intrinsic concentration (n1). This reduces the Boltzmann
carrier concentrations to:

n=e" (11)

p=e (12)

In the discretization of Equation (10) we use finite-difference techniques, since its convergence properties are well
established. The device domain R is divided in small rectangular subdomains by a mesh M {(x, Yj ), 1

i nz, 1 < i � n} formed by the interception of n, lines parallel to axis y and n, lines parallel to axis x. This
mesh cannot be choosen arbitrarialy, since its density must be adequate to the potential variations along the device.
In regions where rapid potential variations occur (vicinity of drain, source and interface Si —5i02) the mesh should
be much more dense than in regions where the potential behavior is smooth (substrate, for example).

(x1.y11)

r

(x .,y ) .- I I -. (x,,yj)
1—1 J

L J
y

—•;

Figure 1: Subdomain and its five points system

Each i n terception point (x , Y2) of mesh M , has fou r neighbors points n amed (x + i ,Y,), (x i , Yj), (x ,Yj — i ) and

(xi, i,+i) (Fig. 1). The distance of point (Xj,yj) to its four neighbors may be expressed as:

h = x — x1_ (13)

h1+i = xi+i — xi (14)

k = !Jj !I—i (15)

k+1 = Yj+1
— Yj (16)

The subdomain ORj, ,where the Poisson equation will be discretized, consists of a rectangular region inside the
broken line of the Fig. 1. The sids-of the rectangle .intcrtept the rncsh.lines in midpoints:
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X1+1/2 (x11+x)/2 (17)

X1—i/2 (x1 + x.1)/2 (18)

Y—1/2 (ii, + y.)/2 (19)

Yj+1/2 (Yj+i + y,)/2 (20)

Integrating equation (10) over the subdornain ORj, and applying the Divergence Theorem we obtain:

Ezd_EydxJJ dxdy (21)
ocIj

The left member of (21) is a line integral over the boundary OC of the subdomain ORj, , where E and E are
the electrical field components. Firstly, we concentrate our attention to the left member of (21). Observing Fig. 1
we note that the line integral around the boundary OC is equal to the sum of four line integrals corresponding to
the sides of the rectangle. Consequently we can define the left member of (21) as:

M1 = >::I k
E dy — E dx = 'k (22)

k=1 t9C3 k=1

and the right member as:

Mr I I dxdy (23)
J J8R,

In the Equation (22), OG corresponds to the side k of the boundary rectangle ôC1, . The side enumeration
begins with the side that contains the point (xj+l,yj), defined as ÔC,'3, and continues counterclockwise until OC4.
The integrals Ik may be expressed as:

fy,+kj+l/2
Il = I Edy (24)

Jy,—k,/2

12J Edx (25)

13= / Edy (26)
Jyj ii 2

,z,+h.+i/2

14=_f Edx (27)

The approximations for the integrals 1k in the integration paths must be done with care. We suppose that the
variations of the electrical field components E and E in each side OC are sufficiently smooth, what permits to
consider them constant in this region. We should again emphasize, that this assumption will be valid , if we could
have an enough dense mesh in regions with rapid potential variations. If that is the case, we can approximate the
electrical components by their values in the midpoints defined in (17) — (20). The integrals Ik take the appoximate
form J:

]i_ =
= + k3÷1/2) — (y3

— k/2)J
= E(x1112,y1).(k+i +k,)/2 (28)

'2
= —E(x1, y2112)[(xj — h/2) — (x1 + h,1/2)]
= E(z1,y,÷112).(h1 + h1)/2 (29)

SPIEVol. 1405 Fifth Congress of the Brazilian Society of Microelectronics (1990) / 29

Downloaded from SPIE Digital Library on 19 Jan 2011 to 128.208.7.120. Terms of Use:  http://spiedl.org/terms



i; =
= E(x1_112,y).[(y, — k,/2) — (yj + k,÷/2)]
= —E(x_112,y).(k1+1+k1)/2 (30)

i; =
= —E(x1, Yj_i/2).[(Xi + h11/2) — (z1 — h/2)}
= —E(z,y1_112).(h11 + h)/2 (31)

The next step in the problem of discretizing (22), is the determination of approximations for the electrical field
components, functions of the electrical potential, in the boundary ôC1, . Since we supposed a constant electrical field
along the integration paths OCIk, , it is reasonable to obtain the midpoints values of the electrical components, using

central interpolation of the potential t/i (E = —gradt/i):

E(r1÷112,y) —(I'+i, —t/'1,)/h11 (32)

E(x1, Yj+1/2) = —(,b1,+1 — t1)/k+1 (33)

E(x1_112,y) = —(t/.'13 —t,11_1)/h1 (34)

E(x,y.112) = —(tP1, — tJ.'1,_1)/k (35)

Substituting (32) — (35) and (28) — (31) into (22) we obtain a discretized equation correspondent to Mi.
We should now determine the discretization of the right member of (21). Supposing again that the sub-domain

oR21 is sufficiently small, we can approximate Mr by:

Mi: = P(Xs; Yj) .AOR,, (36)

,where AOR,, represents the area of the subdomain rectangle OR , and p(xi , Y3), the value of the charge density
in the point (x1, y3). According to Fig.1 the rectangular domain area is A0RJ = (h1/2 + hi/2).(k3/2 + k,+1/2).
Substituting A8RI into (36), we obtain the discrete equation for Mr:

?: = + h11).(k + k1)/4 (37)

Once derived M, and M,., we finally obtain the discretized Poisson equation, in a point (x ,y3 ) inside the MOSFET
device:

hi+1(k + k+i) + k + ki+i(h + h+i)) _ (ki
+

ki÷)i i-fl j j+1 I

(k,+k+i\ (h1+h1+i\ ______
—,bi+1,j.L L JtI.)i,j1.t 1 ,—t,b+i\ 'I+1 I \ A;j I \ i+1

p(Xi,yj) 'I'.. 1. 3—
2E

.Iij -r j+1 )V•'j + A#j+1

5. BOUNDARY CONDITIONS

The domain of a typical MOSFET device has a rectangular structure, like that in the Fig. 2. In a general manner,
we can divide the boundaries of this structure in three categories: ohmic contacts (BC, DE and FA), artificial
boundaries (AB and EF) and semiconductor-oxide interface (CD). Each category contributes with a different type
boundary condition, that is derived by physical and mathematical reasoning. In the following explanations we obtain
discretized equations for thcse boundary conditions.
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Figure 2: MOSFET device structure

5.1 Ohmic contacts

Let us suppose that the ohmic contacts ofsource (DE), drain (BC) and bulk (AF) are ideal. This can be physically
expressed, supposing that in the surface contact we have space-charge neuiraliiy (p = 0) and thermal equilibrium

(corresponding to infinite surface recombination). With the carrier density normalized:

fli,jPi,j : (39)

ni,j Phj N1,1 = 0 (40)

,where N is the dopant concentration. In the above equations, the indices i and jindicate that the values of n,p and
N are considered at the point (x1, y,) of the ohmic contact. The solution of equations (39) —(40), together with the
Boltzmann approximations for the carrier densities, produce a Dirichiet boundary condition to the potential at the
point (xj,yj):

tb1, = in (' + \/+l (41)

5.2 Artificial boundaries

The artificial boundaries (AB) and (EF) ,Fig. 2, are not real boundaries in the physical sense. They are introduced
in order to isolate the device domain in a closed form, enabling its simulation. The conditions associated with these
boundaries can be derived by a previous qualitative knowledge of the device operation.

(x, y1,)

-. (x11,yj)
(Xj.Yj)

J

(x .y_)

Figure 3: Artificial boundary (EF)

A natural manner to isolate the device is to suppose that the potential derivatives vanish in a direction perpen-
dicular to the artificial boundary. This is formulated by a Neumann boundary condition:

(42)
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,where ñ. is a unitary vector perpendicular to the artificial boundary. The discretization of equation (42) at the point
(xi, y) (Fig3) on the articial boundary (EF) is:

=0 (43)
x',y,

t/,i+1j — 1I)i,j = 0 (44)

These formulations can be identically applied to the boundary (AB).

5.3 Semiconductor-oxide interface

In the semiconductor-oxide interface we have the discretized electrical potential equation by applying the Gauss
law. Supposing that the electrical field vector is predominantly vertical in the semiconductor-oxide interface:

(45)
'9y

,where is the interface trapped charge, and , denote the silicon and the oxide electrical permittivities
respectively, and t,b and tI the electrical potentials.

Si02
(x1, y1) . . (x11 )-

Si (x.y.)

L -J

(x y1)

Figure 4: Interface discretization

The problem now is to determine the potential t,b in the oxide. For simplicity, we suppose that the oxide region
is free of electrical charge. This assumption lead us to consider the validity of Laplace equation inside the oxide.
tfherefore the electrical field (i.e. its vertical component Es), can be considered constant. Since the thickness (t°)
of the oxide layer is very thin, we can approximate E by:

E — Obots—Vy (46)y— 8 _
,where V9 is the gate potential. Substituting (46) into (45) and denoting the semiconductor potential by tP, instead
of i/', , we have:

(47)
Ely c3tox a E,t

According to Fig. 4, the vertical electrical field component can be approximated by:

_ — t,j_j
(48)ôy

Substituting the above approximation above in (47), we derive the discretized interface equation:

(i-+ —-_) —
= + —--vg (49

k, c3t0 k, ,
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In the discretization of Poisson equation (10) we did not makeany consideration about the linearization of the
space charge density p, which in a normalized form is:

p=p—n+N (50)

p(b)=e —e'°+N (51)
This can be done now, if we take a first order approach for p in the neighborhood of the point (x1, y,):

p(t,b) +pj)(t,b — t,Ii) (52)

,where p'(tI) is the charge density derivative at the point (x2, y,). Substituting (52) into the Poisson equation (10)
we have:

c,Ab + p'(t,b)b = P'(i,j)ij — p(tPj) (53)

,where Lt,b is the Laplacian of the electrical potential. The conventional approach to the numerical solution of the
Equation (53) is based on the application of Newton method. Let us take the potential tin (53), as the potential
value in the next Newton interation step. Therefore the Equation (53), can be written:

fSLt#,k+1 + p'(t,b)t,b1 = pl(t,bI)t,bk,j () (54)

,where the indices k + 1 and k correspond to the number of the Newton interation step. The discretization of the
Laphician k+1 w done in the left member of equation (38) of Sec.4.

Finally, the solution of the algebric linear system resulting from each Newton interation step can be obtained by
G auss-Siedel method with SOR (Succesive Overrelaxation) acceler ation technique.

7. EXAMPLES

In this section we want to present some illustrative examples of Poisson bi-dimensional simulations performed in
two n-channel MOSFET devices with 5.0urn and 1.Opm channel lengths. In both devices we used a substrate doping
of 10'6cm3, source-drain implantation with phosphorus, with implantation dose of 10'6cm2 and implantation
energy of 40 keV. The implantation is done through a free silicon surface, and the drive-in step is performed at
1000°C for 900s. Although more realistic doping profiles could be used, by employingprocess simulation programs
like SUPREM2, we consider that the profile derived in Sec. 3 is enough accurate toour purpose. For the gate
characteristics we considered an oxide thickness of 500 A, gate material Aluminium and zero interfacecharge density.

Because of the drain and source lateral subdiffusion, we note from Fig.5, that thep-n junction is positioned
approximately at O.3prn from the mask edge. This results in an effective channel length of 0.4;un. From Figs.6 - 7
we observe the potential distribution in the devices, when the gate voltage applied to them is approximately the long-
channel device threshold voltage. It is well known, and we can check in these figures, that the short-channel device
performs the channel inversion before the long-channel device, which contributes to the decreasing of the threshold
voltage value in very small MOSFET's. We want to emphasize, with this example, the importance of bi-dimensional
simulation of semiconductor devices , in the investigation of dimensional effects of sub-microns devices, which cannot
be expected by the classical Shockley theory'3.

8. CONCLUSIONS

This paper details the bi-dimensional simulation of MOSFET devices in thermal equilibrium condition. A classical
bi-dimensional doping profile is presented, and the discretization and numerical techniques for the determinationof
the potential distribution are extensively explored. The importance of the Poissonequation in the understanding of
MOSFET dimensional effects is underlined, with a classical example of thresholdvoltage variation in a short-channel
device.
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