
HW/SW Co-Design of Identity-Based Encryption
using a Custom Instruction Set

Leonardo Amaral#1, Guido Araujo#2, Julio López#3
Institute of Computing, University of Campinas,

Cidade Universitária Zeferino Vaz P. O. Box 6176 Campinas-SP, Brazil
1
lsamaral.ios@gmail.com
2
guido@ic.unicamp.br

3
jlopez@ic.unicamp.br

 Abstract—Identity-Based Cryptography has been gradually

accepted as a more effective way of implementing asymmetric

cryptography. The calculation of cryptographically-suitable

pairings is crucial for the performance of pairing based

protocols. In this paper we present a comparative study of

hardware implementation techniques for computing the ηT

pairing over the finite field F 3
97
. Our hardware-software

implementation use Altera $ios II processor as platform. Using

code profiling we identify critical field operations which

concentrate most of the execution time; then these operations

were implemented as specialized FPGA instructions/modules and

added to the processor. The specialized processor was

synthesized and the application was tailored to the new

hardware. Experimental results show that a considerable

speedup can be achieved when compared to the baseline software

only approach. Moreover, we show that such HW/SW co-design

approach is competitive with other solutions.

I. INTRODUCTION

Public key cryptography, as introduced by Whitfield Diffie
and Martin Hellman in 1976 [1], has been largely used in
computer security applications since its inception. Although
effective, this scheme presents some restrictions like the need
of a complex digital certificate infrastructure administration to
assure the identity of the entities at both ends of the
communication channel.

In 2001, Boneh and Franklin [2], introduced the use of
pairings for Identity-Based Encryption. In this new
asymmetric cryptography scheme, the user public key is some
information that uniquely identifies the user, for example, the
driver’s license number or electronic address (e-mail). This
type of public-key cryptography is known as Identity-Based
Cryptography, and was initially proposed by Shamir in 1994
[3] (using a signature scheme).

Pairing computation is the most computational intensive
primitive in Identity-Based Cryptography; therefore efficient
implementation of pairing algorithms are vital to the overall
system performance of pairing based protocols. More details
about the pairing over elliptic curves can be found in [4][5].

In this paper we choose as candidate the ηT pairing
(proposed by Barreto et al in [4]) and the algorithms proposed
by Beuchat et al in [5]. The pairing computation can be
decomposed into a series of smaller field arithmetic operations
in F 3

m, including: addition, subtraction, multiplication and
cubing. In order to evaluate the computation effort of each

operation, execution time profiling of a baseline software
implementation was performed, and used to guide a careful
FPGA hardware specialization of some critical operations. A
generic HW/SW solution was also designed. The experimental
results reveal that the proposed approaches can produce a
considerable speedup, when compared to the software only
solution, without the design effort/cost and inflexibility of a
hardware only approach.

II. RELATED WORK

Some techniques have been proposed to deal with Identity-
Based Cryptography, most of which follows a purely
hardware a [5][6][7] or purely software [8],[9],[10] approach.
Most purely hardware approaches adopt the whole pairing
implementation in hardware, and are usually designed as
expensive hardware security proprietary modules or co-
processors.

A purely hardware approach achieves the best performance.
However, due to their high design/production costs and lack
of flexibility their adoption in real world scenarios is more
difficult. If a specialized system needs to compute thousands
of pairings in a second, then this approach becomes necessary.
Moreover, it offers an increment in security, since
cryptanalysis attacks directly to the hardware is a complex and
expensive process.

The purely software approach (which does not use any a
custom instruction or specialized hardware) is slower when
compared to the purely hardware. However, it offers a very
low cost solution combined with higher flexibility.

In this work we explore a third alternative, based on a mix
of hardware/software modules, in which software pairing
counts with the help of specialized hardware modules for
compute critical parts of the pairing. Such approach is
subdivided into two variations. In the first one, referred from
now on as specialized hardware/software, the hardware
possesses highly specialized instructions or modules for small
parts resolution of the pairing. In the second (in this work we
will refer to it as generic hardware/software approach), the
hardware possesses some generic instructions that can be used
in the critical parts acceleration of the pairing. As shown later
the first approach presents a slightly superior performance to
second, while the second present a much larger flexibility than
the first.

978-1-4244-4377-2/09/$25.00 © 2009 IEEE FPT 2009510

In this paper we designed pairing solutions using generic
hardware/software and specialized hardware/software
approaches. We measured the HW/SW solutions speedups
with respect to a software only solution, and compared its cost
and flexibility with respect to hardware only architectures.

III. THE PLATFORM

The design of a combined HW/SW solution to pairing
requires a flexible FPGA platform which could allow an easy
mapping of program modules into specialized hardware
modules. The platform used herein was an Altera Nios II [11]
development kit based on a Stratix II FPGA [12]. Nios II is an
Altera 32-bit processor which enables the tailoring of new
instructions into its instruction set, by means of a very flexible
design environment. It has also an Avalon data bus which
allows the insertion of new hardware modules directly to the
processor bus.

Such platform is supported by a specialized Altera Quartus
II toolchain [13] and GCC compiler, capable of generating
optimized NIOS II code starting from C/C++ applications.
The VHDL was used in the modeling of specialized hardware
modules. The SOPC Builder tool, which is integral part of
Altera Quartus II, was used to enable the insertion of new
hardware directly into the processor. That tool generates
automatically C libraries that contain the signatures of the
calls used to access the specialized hardware which is added
to the processor, simplifying thus the access to the
instructions/modules.

IV. CRYPTOGRAPHY FEATURES OF THE SYSTEM

In this paper, we chose ηT as the pairing algorithm and the
scheme proposed by Beuchat et al in [5]. We have selected the
adaptation of the cube-root-free reversed-loop algorithm,
proposed in [5] as the basis to our pairing implementation.
This algorithm presents some characteristics that can be
observed in Table I.

The selected pairing algorithm was implemented using
C/C++ and, its execution was profiled using the Oprofile [14]
tool in a Pentium 4 processor. The goal of this experiment was
to identify the sub-group of functions which was responsible
for the largest share of the pairing execution. With this
distribution, it is possible to pin point the best functions to be
accelerated in hardware, when using a combined
hardware/software approach.

Analyzing the results of the Oprofile execution one can
identify that the two largest contributors to the pairing running
time are the polynomials multiplication function over F 3

m
(~96%) and the cubing function over F 3

m (~2%). Those
functions sum together approximately 98% of the execution
time required to compute the pairing over elliptic curves. In
order to improve pairing performance, such operations were
implemented in hardware.

V. SPECIALIZED HARDWARE/SOFTWARE APPROACH

As mentioned in the previous sections, the field operations
of multiplication and cubing in F 3

97 were selected to be
implemented in hardware. This was done using VHDL as a

hardware description language. For such task two different
approaches were defined according to the features of each
function.

The polynomial cubing over F3
97 was implemented as a

new instruction into the NIOS II processor instructions set.
This architecture decision was taken due to the fact of the
cubing function be a relatively small combinational logic, for
which the overall latency could be accommodated within the
execution stage of the processor pipeline, without impacting
its clock cycle.

On the other hand, polynomial multiplication in F3
97 was

implemented as a module attached to the processor data bus,
given the size and latency of the chosen algorithm.

TABLE I
CRYPTOGRAPHY CHARACTERISTICS

Characteristic Used Value

Underlying Field F3
m , where m is coprime to 6 and m is 97

Curve E: y2 = x3 – x + 1, b = 1
Irreducible
polynomial of
degree m

ƒ(x) = x97 + x12 + 2

Number of
rational points of
Curve

190880563234078270754244862876156026926706
48963

Embedding
degree

k = 6

l 272686518905826101077496079813497618717146
2721

Distortion map ψ : E(F3
97)[l] → E(F3

6*97)[l] \ E(F3
97)[l]

(x, y) ֏ (ρ – x, yϭ)

with ρ ϵ F3
3*97 and ϭ ϵ F3

2*97 satisfying ρ3 = ρ + 1 and
ϭ2 = –1

Tower Field F3
6*97 = F3

97 [ρ, ϭ] ≅ F3
97 [X, Y] / (X3 – X – b, Y2 +

1)
Final
Exponentiation

M = (33*97) . (397 + 1) . (397 + 1 – µ3(97 + 1) / 2)

Parameters λ and ν = –1

A. Cubing in F3
97

As described in [5] cubing operation over F3
97 consists of

computing the expression below and to reduce it by an
irreducible polynomial f(x) of degree m.

d(x)3 mod ƒ(x) =
1

0

m

i

−

=

∑ dix
3i mod ƒ(x)

The hardware implementation of this expression can be
obtained by applying loop-unrolling in the given expression.
The computation of each result element is achieved by
summing up the polynomial coefficients over F3, what can be
done in parallel.

As said before, this operation was implemented as a custom
instruction in the NIOS II processor. The new instruction
receives two 32-bit operands, and an 8-bit (n) parameter
which is passed to the call instruction to select which
hardware sub functions will be used. The new instruction
returns a 32-bit result, which corresponds to a fraction of the
resulting polynomial. In our system each element of F 3 is
represented as two bits in hardware. In other words, an
element in F 3

97 is represented by 194-bit. Since a custom

511

instruction can receive only 64-bit as input and returns only
32-bits as output, it is necessary to divide the cubing operation
into 3 phases:

• In the first phase the instruction is called 4 times, using
which provide it with 64-bit of the input polynomial at
each instruction call. In the last call only 2-bit are
passed. The input polynomial is stored in an intern
register of the instruction.

• In the second phase the cubing computation is
accomplished. For that the instruction is called again
and a code which indicates such task is passed in the
input n.

• In the third and last phase the result of the operation is
returned. As we can return only 32-bit to each call, it is
necessary 7 calls to return the whole result.

Therefore, 12 calls are used to compute the cubing
operation.

B. Multiplication in F3
97

In this paper we used a modification of the first most
significant element multiplication algorithm over F 3

97 [5].
Basically, the algorithm receives as inputs two polynomials
over F 3

97, compute their multiplication and returns a F 3
97

polynomial as result.
Similarly as in the NIOS II custom instruction call, the call

of a bus module also presents limitation. A module attached to
the Avalon data bus receives as input an operand of 32-bit and
returns 32-bit as result. It also needs an 8 bits (n) selection
operand that is passed as a function selector during the module
call. Due to those characteristics the multiplication operation
is sub-divides in three phases:

• In the first phase the module is called 14 times to pass
the two input polynomials through of the input operand
of 32-bit. The two input polynomials are stored into two
internal registers in the module.

• In the second phase the multiplication is executed. This
phase happens during the last call of the previous phase,
and this no call is needed.

• In the third and last phase, 7 calls to the module are
performed, so as to enable the return of the result.

Therefore, in total 21 calls to the multiplication module are
done to accomplish the operation.

VI. GENERIC HARDWARE/SOFTWARE APPROACH

Two instructions were selected to be implemented as new
custom instructions into the processor. They were the
multiplication and sum of two polynomials in F3

16. By using
these two instructions, it is possible to compute the whole
multiplication operation in F3

m.

A. Polynomial Multiplication in F3
16

This instruction receives as input two polynomials in F3
16

(represented by a word of 32-bit) and returns a polynomial in
F3

31 (represented by two words of 32-bit). As we can return
only 32-bit at each instruction call, it is necessary two calls to
obtain the 64-bit result (the first call returns the least
significant 32-bits, followed by the most significant 32-bit,
after the second call).

B. Polynomial Sum in F3
32

This instruction receives as input two polynomials in F3
16

(represented by a word of 32-bit) and returns a polynomial in
F3

16 (represented by a word of 32-bit). Such instruction return
only 32-bit, requiring just one call to perform the sum
operation.

C. Multiplication in F3
97

The multiplication using generic instructions can be divided
into 3 phases. During the first phase, the partial products are
computed in parallel. The second phase computes the sum of
the partial products (also in parallel) and finally, the last phase
performs the reduction operation by an irreducible polynomial
of degree m.

In the first phase the two input polynomials a(x) and b(x)
(both polynomials in F3

97) are subdivided into 7 polynomials
in F3

16 (represented by a 32-bit word). Each element of the
polynomial b(x) is multiplied by each element of a(x), thus
generating 49 partial products (each partial product is a
polynomial in F3

31).
In the second phase the partial products generated in the

first phase are summed. Finally, the resulting polynomial of
the sum is reduced by an irreducible polynomial of degree 97.

VII. RESULTS

Two metric were used to evaluate the developed
approaches. The first metric is the number of ALUTs used for
each entity implementation (Table II). Observe in that table
that the implementation of the hardware/software approach
needs a small amount of hardware when compared with a
purely hardware approaches, as in [6] (needs of 14895 slices)
or in [7] (needs of 55616 slices).

Another relevant metric was the time spent in the pairing,
multiplication and cubing operations when comparing the
different approaches, as these operations have been shown to
represent most of the application execution time. These
numbers are presented in Table III.

Observe that when the time needed to compute the
multiplication operation is not considered the time of the
pairing in the processor NIOS II falls ≈2%, when compared
with the software approach without optimization running on a
NIOS II processor. In other words, the pairing mapping done
by Oprofile it coherent with the experimental result. Moreover
notice that the time of the multiplication using the processor
Pentium 4 is ≈10 times faster than in the processor NIOS II,
and that pairing also follows that same proportion. Hence, the
speedups that we can achieve using hardware specialization
would produce a proportionally speedup if the same technique
would be used in a high-end processor.

TABLE II
NUMBER OF ALUTS FOR HARDWARE ENTITY

Entity Total of ALUTs

Nios II Processor 2293

Multiplication Module 1746
Multiplication Instruction more
Generic Sum Instruction

843

Cubing Instruction 261

512

TABLE III
EXECUTION TIMES (IN MILLISECONDS)

Approach ηT Pairing Multiplication Cubing

Pentium 4 Processor
at 2.4 GHz (without
optimization)

7 x102 8,779 x10-1 1,96 x10-3

Nios II Processor at
50MHz (without
optimization)

7,299 x103 8,656 4,1 x10-2

Nios II Processor at
50MHz (using the
multiplication
module)

2,172 x102 5,199 x 10-2 4,1 x10-2

Nios II Processor at
50MHz (using the
multiplication
module more the
cubing instruction)

2,147 x102 5,199 x 10-2 3,60 x10-2

Nios II Processor at
50MHz (using
generic
multiplication and
sum Instructions)

3,024 x102 1,4899 x10-1 4,1 x10-2

Nios II Processor at
50MHz (not counting
the time of the
multiplication, it is
the ideal
acceleration)

1,484 x102 0 4,1 x10-2

Table IV shows a comparison among our hardware

multiplication module and several other implementations in
F 3

97. The pipelined multiplier presented in [15] is at the
moment the fastest found in the literature, it requires only
11.467ns to compute a multiplication. It is important to notice
that our implementation is not pipelined, and thus we expect a
considerable speedup once this is done.

VIII. CONCLUSION

Our results show that the hardware/software approach leads
to an improvement of about 3300% in pairing performance,
thus being the best option when we needed a more
performance while maintaining low cost. However, the
generic hardware/software approach is little behind, getting an
improvement of ≈2400% and using a circuit ≈51% smaller
than the specialized hardware/software approach. Thus we can
conclude that both approaches produce a considerable
performance gain and that the generic hardware/software
approach is the best candidate for implementation on low cost
devices, given it possesses great flexibility at lower cost.

REFERENCES
[1] W. Diffie, M. E. Hellman, “New directions in cryptography,” IEEE

Transactions on Information Theory, vol. IT-22, n. 6, pp. 644-654, Nov.
1976.

[2] D. Boneh, M. Franklin, “Identity-Based Encryption from the Weil
pairing,” SIAM Journal on Computing, vol. 32, n. 3, pp. 586-615, 2003.

[3] A. Shamir, “Identity-Based cryptosystems and signature schemes,”, in
Proc. of the Crypto'84 on Advances in Cryptology, 1985, p. 47-53.

[4] P. S. L. M. Barreto, S. D. Galbraith, C. Ó’ Héigeartaigh, M. Scott,
“Efficient pairing computation on supersingular Abelian varieties,”
Designs, Codes and Cryptography, vol. 42, n. 3, pp. 239–271, Mar.
2007.

[5] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M. Shirase, T.
Takagi. “Algorithms and arithmetic operators for computing the ηT
pairing in characteristic three,” IEEE Transactions on Computers, vol.
57, n. 11, pp. 1454-1468, Nov. 2008.

[6] J.-L. Beuchat, M. Shirase, T. Takagi, E. Okamoto, “An algorithm for the
ηT pairing calculation in characteristic three and its hardware
implementation,” in Proc. of the 18th IEEE Symposium on Computer
Arithmetic, 2007, p. 97–104.

[7] T. Kerins, W. P. Marnane, E. M. Popovici, P. S. L. M. Barreto,
“Efficient hardware for the Tate pairing calculation in characteristic
three,” in Proc. of the Cryptographic Hardware and Embedded Systems
– CHES’05, 2005, p. 412–426.

[8] O. Ahmadi, D. Hankerson, A. Menezes “Software implementation of
arithmetic in GF(3

m),” in Proc. of the 1st international Workshop on
Arithmetic of Finite Fields, vol. 4547, pp. 85-102, Jun. 2007.

[9] J.-L. Beuchat, E. López-Trejo. L. Martínez-Ramos, S. Mitsunari, F.
Rodríguez-Henríquez, “Multi-core implementation of the Tate pairing
over supersingular elliptic curves,” in Cryptology ePrint Archive, 2009,
Report 2009/276.

[10] Y. Kawahara, T. Takagi, E. Okamoto, “Efficient implementation of Tate
pairing on a mobile phone using Java,” in Proc. of the CIS 2006, NAI
4456, 2007, p. 396–405.

[11] Altera Nios II processor website. Available:
http://www.altera.com/products/ip/processors/nios2/ni2-index.html,
2009

[12] Altera Stratix II FPGA website. Available:
http://www.altera.com/products/devices/stratix-fpgas/stratix-ii/stratix-
ii/st2-index.jsp, 2009.

[13] Altera Quartus II Subscription edition software website. Available:
http://www.altera.com/products/software/quartus-ii/subscription-
edition/qts-se-index.html, 2009.

[14] Oprofile website. Available: http://oprofile.sourceforge.net/about/, 2009.

[15] N. Cortez-Duarte, F. Rodríiguez-Henríquez, J.-L. Beuchat, E. Okamoto,
“A pipelined Karatsuba-Ofman multiplier over GF(3

97),” in Cryptology
ePrint Archive, 2008, Report 2008/127.

[16] R. Ronan, C. Murphy, T. Kerins, C. Ó’ Héigeartaigh, P. S. L. Barreto,
“A flexible processor for the characteristic 3 ηT pairing,” International
Journal of High Performance Systems Architecture, vol. 1, n. 2, pp. 79-
88, 2007.

[17] P. Grabher, D. Page, “Hardware acceleration of the Tate pairing in
characteristic three,” In Proc. of the Cryptographic Hardware and
Embedded Systems – CHES’05, 2005, p. 398–411.

[18] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, “Arithmetic
operators for pairing-based cryptography,” In Proc. of the 9th
international workshop on Cryptographic Hardware and Embedded
Systems – CHES’07, 2007, p. 239-255.

TABLE IV
HARDWARE COST OF SEVERAL F3

97 MULTIPLIERS SPECIFICALLY DESIGNED FOR PAIRINGS

Multipliers Platform Cycles Clock Period (ns) Latency (ns) Frequency (MHz) Area (Slices/Aluts)

Ronan et al [16] Virtex II Pro 7 16.23 113.6 61.6 3737
This work Stratix II 32 5.915 186.28 169 1746
Grabher et al [17] Virtex II Pro 28 6.67 186.6 150 946
Beuchat et al [18] Cyclone II 33 6.711 221.46 149 700
Kerings et al [7] Virtex II Pro 25 34.129 853.22 29.3 1821

513

