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 Abstract—Identity-Based Cryptography has been gradually 

accepted as a more effective way of implementing asymmetric 

cryptography. The calculation of cryptographically-suitable 

pairings is crucial for the performance of pairing based 

protocols. In this paper we present a comparative study of 

hardware implementation techniques for computing the ηT 

pairing over the finite field F 3
97
. Our hardware-software 

implementation use Altera $ios II processor as platform. Using 

code profiling we identify critical field operations which 

concentrate most of the execution time; then these operations 

were implemented as specialized FPGA instructions/modules and 

added to the processor. The specialized processor was 

synthesized and the application was tailored to the new 

hardware. Experimental results show that a considerable 

speedup can be achieved when compared to the baseline software 

only approach. Moreover, we show that such HW/SW co-design 

approach is competitive with other solutions. 

I. INTRODUCTION 

Public key cryptography, as introduced by Whitfield Diffie 
and Martin Hellman in 1976 [1], has been largely used in 
computer security applications since its inception. Although 
effective, this scheme presents some restrictions like the need 
of a complex digital certificate infrastructure administration to 
assure the identity of the entities at both ends of the 
communication channel.    

In 2001, Boneh and Franklin [2], introduced the use of 
pairings for Identity-Based Encryption. In this new 
asymmetric cryptography scheme, the user public key is some 
information that uniquely identifies the user, for example, the 
driver’s license number or electronic address (e-mail). This 
type of public-key cryptography is known as Identity-Based 
Cryptography, and was initially proposed by Shamir in 1994 
[3] (using a signature scheme). 

Pairing computation is the most computational intensive 
primitive in Identity-Based Cryptography; therefore efficient 
implementation of pairing algorithms are  vital to the overall 
system performance of pairing based protocols. More details 
about the pairing over elliptic curves can be found in [4][5]. 

In this paper we choose as candidate the ηT pairing 
(proposed by Barreto et al in [4]) and the algorithms proposed 
by Beuchat et al in [5]. The pairing computation can be 
decomposed into a series of smaller field arithmetic operations 
in F 3

m, including: addition, subtraction, multiplication and 
cubing. In order to evaluate the computation effort of each 

operation, execution time profiling of a baseline software 
implementation was performed, and used to guide a careful 
FPGA hardware specialization of some critical operations. A 
generic HW/SW solution was also designed. The experimental 
results reveal that the proposed approaches can produce a 
considerable speedup, when compared to the software only 
solution, without the design effort/cost and inflexibility of a 
hardware only approach. 

II. RELATED WORK  

Some techniques have been proposed to deal with Identity-
Based Cryptography, most of which follows a purely 
hardware a [5][6][7] or purely software [8],[9],[10] approach. 
Most purely hardware approaches adopt the whole pairing 
implementation in hardware, and are usually designed as 
expensive hardware security proprietary modules or co-
processors.      

A purely hardware approach achieves the best performance. 
However, due to their high design/production costs and lack 
of flexibility their adoption in real world scenarios is more 
difficult. If a specialized system needs to compute thousands 
of pairings in a second, then this approach becomes necessary. 
Moreover, it offers an increment in security, since 
cryptanalysis attacks directly to the hardware is a complex and 
expensive process.  

The purely software approach (which does not use any a 
custom instruction or specialized hardware) is slower when 
compared to the purely hardware. However, it offers a very 
low cost solution combined with higher flexibility. 

In this work we explore a third alternative, based on a mix 
of hardware/software modules, in which software pairing 
counts with the help of specialized hardware modules for 
compute critical parts of the pairing. Such approach is 
subdivided into two variations. In the first one, referred from 
now on as specialized hardware/software, the hardware 
possesses highly specialized instructions or modules for small 
parts resolution of the pairing. In the second (in this work we 
will refer to it as generic hardware/software approach), the 
hardware possesses some generic instructions that can be used 
in the critical parts acceleration of the pairing. As shown later 
the first approach presents a slightly superior performance to 
second, while the second present a much larger flexibility than 
the first.  
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In this paper we designed pairing solutions using generic 
hardware/software and specialized hardware/software 
approaches. We measured the HW/SW solutions speedups 
with respect to a software only solution, and compared its cost 
and flexibility with respect to hardware only architectures. 

III. THE PLATFORM   

The design of a combined HW/SW solution to pairing 
requires a flexible FPGA platform which could allow an easy 
mapping of program modules into specialized hardware 
modules. The platform used herein was an Altera Nios II [11] 
development kit based on a Stratix II FPGA [12]. Nios II is an 
Altera 32-bit processor which enables the tailoring of new 
instructions into its instruction set, by means of a very flexible 
design environment.  It has also an Avalon data bus which 
allows the insertion of new hardware modules directly to the 
processor bus.  

Such platform is supported by a specialized Altera Quartus 
II toolchain [13] and GCC compiler, capable of generating 
optimized NIOS II code starting from C/C++ applications.  
The VHDL was used in the modeling of specialized hardware 
modules. The SOPC Builder tool, which is integral part of 
Altera Quartus II, was used to enable the insertion of new 
hardware directly into the processor. That tool generates 
automatically C libraries that contain the signatures of the 
calls used to access the specialized hardware which is added 
to the processor, simplifying thus the access to the 
instructions/modules. 

IV. CRYPTOGRAPHY FEATURES OF THE SYSTEM    

In this paper, we chose ηT as the pairing algorithm and the 
scheme proposed by Beuchat et al in [5]. We have selected the 
adaptation of the cube-root-free reversed-loop algorithm, 
proposed in [5] as the basis to our pairing implementation. 
This algorithm presents some characteristics that can be 
observed in Table I. 

The selected pairing algorithm was implemented using 
C/C++ and, its execution was profiled using the Oprofile [14] 
tool in a Pentium 4 processor. The goal of this experiment was 
to identify the sub-group of functions which was responsible 
for the largest share of the pairing execution. With this 
distribution, it is possible to pin point the best functions to be 
accelerated in hardware, when using a combined 
hardware/software approach.   

Analyzing the results of  the Oprofile execution one  can 
identify that the two largest contributors to the pairing running 
time are the polynomials multiplication function over F 3

m 
(~96%) and the cubing function over F 3

m (~2%). Those 
functions sum together approximately 98% of the execution 
time required to compute the pairing over elliptic curves. In 
order to improve pairing performance, such operations were 
implemented in hardware. 

V. SPECIALIZED HARDWARE/SOFTWARE APPROACH    

As mentioned in the previous sections, the field operations 
of multiplication and cubing in F 3

97 were selected to be 
implemented in hardware. This was done using VHDL as a 

hardware description language. For such task two different 
approaches were defined according to the features of each 
function.   

The polynomial cubing over F3
97 was implemented as a 

new instruction into the NIOS II processor instructions set. 
This architecture decision was taken due to the fact of the 
cubing function be a relatively small combinational logic, for 
which the overall latency could be accommodated within the 
execution stage of the processor pipeline, without impacting 
its clock cycle.   

On the other hand, polynomial multiplication in F3
97 was 

implemented as a module attached to the processor data bus, 
given the size and latency of the chosen algorithm. 

TABLE I 
CRYPTOGRAPHY CHARACTERISTICS 

Characteristic Used Value 

Underlying Field F3
m , where m is coprime to 6 and m is 97 

Curve E: y2 = x3 – x + 1, b = 1 
Irreducible 
polynomial of 
degree m 

ƒ(x) = x97 + x12 + 2 

Number of 
rational points of 
Curve 

190880563234078270754244862876156026926706
48963 

Embedding 
degree  

k = 6 

l 272686518905826101077496079813497618717146
2721 

Distortion map ψ : E(F3
97)[l] → E(F3

6*97)[l] \ E(F3
97)[l] 

(x, y) ֏ (ρ – x, yϭ) 

with ρ ϵ F3
3*97 and ϭ ϵ F3

2*97 satisfying ρ3 = ρ + 1 and 
ϭ2 = –1 

Tower Field F3
6*97 = F3

97 [ρ, ϭ] ≅ F3
97 [X, Y] / (X3 – X – b, Y2 + 

1) 
Final 
Exponentiation 

M = (33*97) . (397 + 1) . (397 + 1 – µ3(97 + 1) / 2) 

Parameters λ and ν = –1 

A. Cubing in F3
97 

As described in [5] cubing operation over F3
97 consists of 

computing the expression below and to reduce it by an 
irreducible polynomial f(x) of degree m. 

d(x)3 mod ƒ(x) = 
1

0

m

i

−

=

∑ dix
3i mod ƒ(x) 

The hardware implementation of this expression can be 
obtained by applying loop-unrolling in the given expression. 
The computation of each result element is achieved by 
summing up the polynomial coefficients over F3, what can be 
done in parallel.  

As said before, this operation was implemented as a custom 
instruction in the NIOS II processor. The new instruction 
receives two 32-bit operands, and an 8-bit (n) parameter 
which is passed to the call instruction to select which 
hardware sub functions will be used. The new instruction 
returns a 32-bit result, which corresponds to a fraction of the 
resulting polynomial. In our system each element of F 3 is 
represented as two bits in hardware. In other words, an 
element in F 3

97 is represented by 194-bit. Since a custom 
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instruction can receive only 64-bit as input and returns only 
32-bits as output, it is necessary to divide the cubing operation 
into 3 phases: 

• In the first phase the instruction is called 4 times, using 
which provide it with 64-bit of the input polynomial at 
each instruction call. In the last call only 2-bit are 
passed. The input polynomial is stored in an intern 
register of the instruction. 

• In the second phase the cubing computation is 
accomplished. For that the instruction is called again 
and a code which indicates such task is passed in the 
input n. 

• In the third and last phase the result of the operation is 
returned. As we can return only 32-bit to each call, it is 
necessary 7 calls to return the whole result. 

Therefore, 12 calls are used to compute the cubing 
operation. 

B. Multiplication in F3
97 

In this paper we used a modification of the first most 
significant element multiplication algorithm over F 3

97 [5]. 
Basically, the algorithm receives as inputs two polynomials 
over F 3

97, compute their multiplication and returns a F 3
97 

polynomial as result.  
Similarly as in the NIOS II custom instruction call, the call 

of a bus module also presents limitation. A module attached to 
the Avalon data bus receives as input an operand of 32-bit and 
returns 32-bit as result. It also needs an 8 bits (n) selection 
operand that is passed as a function selector during the module 
call. Due to those characteristics the multiplication operation 
is sub-divides in three phases:    

• In the first phase the module is called 14 times to pass 
the two input polynomials through of the input operand 
of 32-bit. The two input polynomials are stored into two 
internal registers in the module. 

• In the second phase the multiplication is executed. This 
phase happens during the last call of the previous phase, 
and this no call is needed. 

• In the third and last phase, 7 calls to the module are 
performed, so as to enable the return of the result.   

Therefore, in total 21 calls to the multiplication module are 
done to accomplish the operation. 

VI. GENERIC HARDWARE/SOFTWARE APPROACH    

Two instructions were selected to be implemented as new 
custom instructions into the processor. They were the 
multiplication and sum of two polynomials in F3

16. By using 
these two instructions, it is possible to compute the whole 
multiplication operation in F3

m. 

A. Polynomial Multiplication in F3
16 

This instruction receives as input two polynomials in F3
16 

(represented by a word of 32-bit) and returns a polynomial in 
F3

31 (represented by two words of 32-bit). As we can return 
only 32-bit at each instruction call, it is necessary two calls to 
obtain the 64-bit result (the first call returns the least 
significant 32-bits, followed by the most significant 32-bit, 
after the second call). 

B. Polynomial Sum in F3
32 

This instruction receives as input two polynomials in F3
16 

(represented by a word of 32-bit) and returns a polynomial in 
F3

16 (represented by a word of 32-bit). Such instruction return 
only 32-bit, requiring just one call to perform the sum 
operation. 

C. Multiplication in F3
97 

The multiplication using generic instructions can be divided 
into 3 phases. During the first phase, the partial products are 
computed in parallel. The second phase computes the sum of 
the partial products (also in parallel) and finally, the last phase 
performs the reduction operation by an irreducible polynomial 
of degree m.    

In the first phase the two input polynomials a(x) and b(x) 
(both polynomials in F3

97) are subdivided into 7 polynomials 
in F3

16 (represented by a 32-bit word). Each element of the 
polynomial b(x) is multiplied by each element of a(x), thus 
generating 49 partial products (each partial product is a 
polynomial in F3

31).  
In the second phase the partial products generated in the 

first phase are summed. Finally, the resulting polynomial of 
the sum is reduced by an irreducible polynomial of degree 97. 

VII. RESULTS    

Two metric were used to evaluate the developed 
approaches. The first metric is the number of ALUTs used for 
each entity implementation (Table II). Observe in that table 
that the implementation of the hardware/software approach 
needs a small amount of hardware when compared with a 
purely hardware approaches, as in [6] (needs of 14895 slices) 
or in [7] (needs of 55616 slices). 

Another relevant metric was the time spent in the pairing, 
multiplication and cubing operations when comparing the 
different approaches, as these operations have been shown to 
represent most of the application execution time. These 
numbers are presented in Table III. 

Observe that when the time needed to compute the 
multiplication operation is not considered the time of the 
pairing in the processor NIOS II falls ≈2%, when compared 
with the software approach without optimization running on a 
NIOS II processor. In other words, the pairing mapping done 
by Oprofile it coherent with the experimental result. Moreover 
notice that the time of the multiplication using the processor 
Pentium 4 is ≈10 times faster than in the processor NIOS II, 
and that pairing also follows that same proportion. Hence, the 
speedups that we can achieve using hardware specialization 
would produce a proportionally speedup if the same technique 
would be used in a high-end processor. 

TABLE II 
NUMBER OF ALUTS FOR HARDWARE ENTITY 

Entity  Total of ALUTs 

Nios II Processor 2293 

Multiplication Module 1746 
Multiplication Instruction more 
Generic Sum Instruction 

843 

Cubing Instruction 261 
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TABLE III 
EXECUTION TIMES (IN MILLISECONDS) 

Approach ηT Pairing Multiplication  Cubing 

Pentium 4 Processor 
at 2.4 GHz (without 
optimization) 

7 x102 8,779 x10-1 1,96 x10-3 

Nios II Processor at 
50MHz (without 
optimization) 

7,299 x103 8,656 4,1 x10-2 

Nios II Processor at 
50MHz (using the 
multiplication 
module) 

2,172 x102 5,199 x 10-2 4,1 x10-2 

Nios II Processor at 
50MHz (using the 
multiplication  
module more the 
cubing instruction) 

2,147 x102 5,199 x 10-2 3,60 x10-2 

Nios II Processor at 
50MHz (using 
generic 
multiplication and 
sum Instructions) 

3,024 x102 1,4899  x10-1 4,1 x10-2 

Nios II Processor at 
50MHz (not counting 
the time of the 
multiplication, it is 
the ideal 
acceleration) 

1,484 x102 0 4,1 x10-2 

 
Table IV shows a comparison among our hardware 

multiplication module and several other implementations in    
F 3

97. The pipelined multiplier presented in [15] is at the 
moment the fastest found in the literature, it requires only 
11.467ns to compute a multiplication. It is important to notice 
that our implementation is not pipelined, and thus we expect a 
considerable speedup once this is done. 

VIII. CONCLUSION    

Our results show that the hardware/software approach leads 
to an improvement of about 3300% in pairing performance, 
thus being the best option when we needed a more 
performance while maintaining low cost. However, the 
generic hardware/software approach is little behind, getting an 
improvement of ≈2400% and using a circuit ≈51% smaller 
than the specialized hardware/software approach. Thus we can 
conclude that both approaches produce a considerable 
performance gain and that the generic hardware/software 
approach is the best candidate for implementation on low cost 
devices, given it possesses great flexibility at lower cost. 
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