Software Co-Verification Based on Program Traces from
Different Processors

Robledo Alencar Sandro Rigo Rodolfo Azevedo
University of Campinas - University of Campinas - University of Campinas -
UNICAMP UNICAMP UNICAMP

Av. Albert Einstein, 1251
Campinas, SP, Brazil
robledo.alencar@

students.ic.unicamp.br

ABSTRACT

High complexity and tight time-to-market have created new
challenges in Multiprocessor System-on-Chip (MPSoC) de-
signs. Virtual platforms play an important role in this sce-
nario, by enabling design space exploration, functional ver-
ification, and IP reuse. Processors are key components on
such virtual platforms, where Architecture Description Lan-
guages are usually applied to automatically generate sim-
ulators and other software tools. This paper focuses on
the software verification path and its main contribution is a
trace matching methodology, capable of matching traces for
different architectures providing a good feedback about the
correct execution of a program. We evaluated our methodol-
ogy and tool using ArchC-generated instruction-set simula-
tors (ISS) for two different processors: MIPS and PowerPC,
and compared all 75 programs from acStone benchmark, 3
synthetic errors injected in the programs and in the simula-
tor, and 10 programs with 15 variations from MiBench that
matched correctly.

1. INTRODUCTION

The ever increasing complexity of electronics systems
has created several new challenges regarding the design
methodology. In order to deal with such complexity and
a tight time-to-market, current Multiprocessor System-on-
Chip (MPSoC) designers are adopting higher abstraction
levels and the so called Electronic System Level (ESL) design
methodology. In this scenario, it is mandatory to have lan-
guages and tools enabling hardware and software co-design,
early platform verification, performance evaluation, and de-
sign reuse.

The advantages of virtual prototypes for the entire sys-
tem architecture are twofold: (a) an early definition of the
hardware-software interface, thus allowing a fast start of
software development (no need to wait the hardware plat-
form to be finished); and (b) an efficient approach to enable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WISH 11 Charmonix, France

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Av. Albert Einstein, 1251
Campinas, SP, Brazil
sandro@ic.unicamp.br

Av. Albert Einstein, 1251
Campinas, SP, Brazil
rodolfo@ic.unicamp.br

platform trade-off, analysis and debugging.

Considering that microprocessors are central modules to
platform coordination and control in any SoC design, effi-
cient microprocessor ESL models are thus relevant pieces in
the design of modern virtual platforms. Such models should
be very fast, and accurate enough only to the level where
they allow a well-defined interface to the software boundary.

Architecture Description Languages (ADLs) have been
widely used to processor model development. ADLs cap-
ture both structure, by means of hardware components, and
behavior, by means of the instruction-set, of processor ar-
chitectures. They are capable of generating a software tool
chain, like simulators, assemblers, linkers, compilers, debug-
gers, etc, which make them valuable in a design automation
methodology, like in ESL. Therefore, it is a natural step to
ADL processor models to be included into high-level virtual
platform models seeking for automation and architecture ex-
ploration.

This paper focuses on the software verification path, where
several tools may be under development at the same mo-
ment: the full platform simulator, the compiler and opti-
mizations, and the hardware abstraction layer to mention a
few. The main contribution of this paper is a verification
methodology and tool that matches traces from different
architectures, providing a good feedback about the correct
execution of a program. In this methodology, designers can
use a reference platform, which simply may be a previous
version of the current one, or other completely different en-
vironment even with another processor.

We evaluated our methodology and tool using ArchC-
generated instruction-set simulators (ISS) for two different
processors: MIPS and PowerPC. ArchC [1,2] is an Archi-
tecture Description Language that uses a simple processor
definition as input and generates several tools as output like
assemblers, linkers, debuggers, and ISS. The generated ISS is
based on the SystemC [4,8] simulator, allowing easy integra-
tion with external components through a TLM interface [9].
Without lack of generality, we use the ArchC trace collection
capability to implement our tool. We could use other simu-
lators or even PIN [7] to get the same data. The trace file
is a sequence of address of each executed instruction. We
evaluated our results using all 75 programs from acStone
benchmark, 3 synthetic errors injected in the programs and
in the simulator, and 10 programs with 15 variations from
MiBench that matched correctly.

This paper is organized as follows: Section 3 describes our

Figure 1: DWARF dump from objdump.

teste.powerpc: file format elf32-big

Jecoded dump of debug contents of section .debug_line:

U: /1/archc/compilers/powerpc/1ib/gcc-1ib/powerpc-elf/3.3. 1/include/teste. c:

“ile name Line number Starting address
teste.c 5 0x100
teste.c 7 0x10c
teste.c 8 0x138
teste.c 9 0x13c

co-verification mechanism. Section 4 shows our experimen-
tal results and Section 5 presents our conclusions and future
work.

2. RELATED WORK

Trace based strategies have been used before. Wild et al
introduced TAPES [13], a trace based mechanism for archi-
tecture performance evaluation with SystemC to aid archi-
tecture exploration, where authors use SystemC TLM and a
trace-driven simulation to capture the interaction of system
resources. High-level verification in SystemC was always a
concern since it is no easy task to debug a whole platform us-
ing a tool like GDB without getting into the SystemC kernel
code. Rogin et al [10] presented a system do aid in this task,
but no co-verification and focus on the software verification
path was present. Hsieh [6] presented an infrastructure for
debug and trace of a DSP system, consisting of the in-system
trace interface and its methodology to optimize the compres-
sion rate of the program and data traces. The platform is
used for HW/SW co-verification on a FPGA based imple-
mentation. Shimizu et al [11] describes how the verification
team working on the Cell BE microprocessor benefited from
trace-based techniques, in this case to determine the data
flow into the platform, to uncover bugs.

3. CO-VERIFICATION MECHANISM

As mentioned before, our co-verification mechanism is
based on execution trace files. Figure 2 shows a simple sam-
ple code that we are going to use throughout this section.
It has a for loop, an if statement, a local function call,
and a printf library function call. Our problem is to find a
way to verify a behavior from this program executing in one
machine with processor P;, compared to its own behavior
executing on another machine on a different processor, Ps.

void SayHello(int i) {
if (i %2 ==20)
printf ("Hello World!\n");

int i;
for (i = 0; i < 10; i ++)

1
2
3
4
5 int main(int argc, char xargv[]) {
6
7
8 SayHello (i) ;

9

Figure 2: Sample C code

We decided to use the source code lines in such a way
that it becomes simple to compare two program executions.
In the example case, the program starts at line 5 and goes

through the for loop (line 7), following a function call (line
8) followed by line 1, finds an if (line 2), the library func-
tion call printf (line 3), and so on. Combining all these
lines we can reach a trace from the program source code
similar to this: 5, 7, 8, 1, 3, 4, 7, 8 1, 2, 4, ... This is
exactly what we need to compare two execution traces. Un-
fortunately, the real trace generated by the ISS is composed
of executed instruction addresses (PC values), which varies
between processors. So we need to convert a sequence of
memory addresses to source-code-level traces and then com-
pare both traces, and we used the debug information as a
common denominator between the two versions of the same
program.

3.1 Background

In this section, we briefly introduce the basic infrastruc-
ture upon which we have developed our methodology.

3.1.1 SystemC and ArchC

SystemC [4, 8, 9] appeared as a response to the need of
higher abstraction levels. Traditional HDLs like VHDL and
Verilog were not suitable for this task. It is also possible to
apply SystemC in RTL designs, but that is not its main pur-
pose. SystemC became one of the most used languages, both
in academia and industry, to enable the so called system-
level design, which evolved to what is known as Electronic
System Level (ESL) design [3]. In fact, SystemC extends
C++ to provide hardware modeling capabilities. The com-
plete simulation library is distributed under an open-source
license. One of its key characteristics is the smooth integra-
tion of hardware and software in the same executable model,
since everything is essentially written in C++.

From its very beginning, ArchC [1,2] was created targeting
SystemC users, so its syntax is totally based on SystemC.
The main idea is to extract information from a generic Sys-
temC processor description in order to automatically gener-
ate tools to experiment and evaluate a new Instruction Set
Architecture (ISA). It is also published under an open-source
license since 2004. As it evolved, the most common use for
ArchC processor models proved to be their integration on
virtual platform models, like SoCs and MPSoCs, written
in SystemC. Users may design their own processor or ex-
periment with the several existing models and tune them
to their needs, even by easily specializing the ISA. In this
scenario, functional verification tools are very important in
order to guarantee that no error was inserted into the pro-
cessor model or in the embedded software running on it. On
the ArchC website [12], users can find the language tools,
several processor models (including MIPS and PPC used in
this paper), compilers, benchmarks, and a reference infras-
tructure to build virtual platforms available for download.

3.1.2 The DWARF format

The DWARF format represents the debug information of a
program by mapping each source code line of the program to
its program counter (PC) value. Notice that, as a function
call may execute many lines of source code, a single line
may be translated into many assembly instructions by the
compiler, so the DWARF format maps a line of source code
only into the PC value of its first assembly instruction. An
example of the DWARF format, dumped with objdump is
shown in Figure 1, where the second column is the source
code line number and the third column is the mapped PC.

For instance, the line 5 of program teste. c starts at memory
position 0x100.

3.2 Basic Trace Mapping

To map two different memory addresses traces and com-
pare them, we compile both programs with debug informa-
tion, we used the DWARF format because it is widely avail-
able but any other debug information could be used. Inside
the DWARF section, there is a map between instruction ad-
dresses and their corresponding source code files and lines.
So, our first step is to read all the DWARF section and con-
vert all the instructions addresses to source code address.
The problem with this step is that each different processor
(P1 and P») usually uses a different number of instructions
to represent the same source code line and the trace is in-
flated with this repeated information. We solved this by
simplifying the mapping such that if the source trace has
the addresses A1, A2, As, A4, and the first three addresses
map to the same source code line, say line 5, it will be placed
only once in the output trace.

Figure 3 shows the mapping flow for two different architec-
tures, MIPS and PowerPC. In this specific case, we want to
verify if one of the architecture toolset (compiler, libraries,
and simulator) matches the result of the other by comparing
the execution of the same program (source code). For each
architecture, the source code is compiled (using gcc in our
case) to produce a binary program with debug information.
The debug information is extracted using objdump and the
full instruction trace is generated by the ArchC simulator
(one different instance for each processor). After that, we
created the converter to map the instruction trace and the
debug information to the source code trace. Both source code
traces are compared using our checker.

Figure 4 shows a mapping example of a simple C source
code (middle) with a MIPS (left) and a PowerPC (right)
implementations. The C source code lines are numbered
sequentially while the real address is used to identify each
assembly code line. For instance, the for command at line
5 of the source code is represented by lines 0x10c—-0x140
of MIPS assembly and by lines 0x10c—0x134 of PowerPC as-
sembly (we intentionally used blank lines to align the smaller
blocks to the bigger ones).

3.3 Multiple Commands On The Same Line

The basic mapping mentioned before works pretty well
even for loops and conditional statements written as in Fig-
ure 2. Unfortunately, there are times where both the for
command and the command inside it are written in the same
line (like if we placed line 8 in front of 7 by removing the line
break). In this case, the previous approach would compact
all the address for those two commands in only one source
code line. Although we cannot change the source code, we
can detect that there is a loop being executed by searching
for a back-edge. We updated the naive previous approach
to a better one that uses the back-edges to detect the traces
so that the 10 loop iterations appear 10 times in the trace
file.

Alternatives solutions to multiple commands in the same
line are:

e Use the DWARF column number to identify different
commands in the same line, when this number is avail-
able for the processors.

e Reformat the code so that each command is placed in
a different line, completely removing the problem.

Each of these alternatives can complement our solution
when they are available. Notice that both of them require
an improved tool chain with support for column numbers or
source code reformatting.

3.4 Function Calls and Libraries

The previous approach works well with function calls and
libraries when the source code is exactly the same, but it is
not always the case like in the newlib processor specific func-
tions. In this case, some functions will have completely dif-
ferent traces (implementations) for the two processors, some
of them with assembly implementations. To solve this, we
need to skip some internal functions and we detect them by
the total number of source code lines available in the debug
information file. Although it is possible for two completely
different functions to have exactly the same number of lines,
it is not the common case and we solve this latter problem
by using a list of functions to skip.

To minimize the impact on the code size, it is common
that library implementers define only one function per file.
This behavior make our task easier to detect different im-
plementations by counting the number of lines. For the very
low number of function with different implementations and
the same number of lines, we use the aforementioned list of
functions to skip.

As we will detail on section 4, our simulator uses float-
ing point emulation and we had to exclude these functions
from the trace since they use inlined assembly code. It is
worth mentioning that this has been done to circumvent a
simulator restriction, and not as part of our methodology.

3.5 Comparing the Traces

The final step is to compare the traces generated by both
executions, one from each processor. These traces should
completely match but we can handle partial matches in the
following way:

No library call: We remove all the library calls and only
try to match the user code. This is the most relaxed
comparison method and is the most easier to check
due to the small number of files, although it is de-
signed to skip the tiles that may already have been
tested. Notice that the meaning of libraries can vary
by considering only the standard c library as newlib
and glibc, or to consider auxiliary libraries like cryp-
tography, graphs, etc. We simplified this issue by con-
sidering the file full path as the indicative of library
presence. We consider a library every file in the sys-
tem library path. Notice that we must also include
the cross-compiler library path here. Alternatively, we
could consider only files outside the current directory
and one of its subdirectories.

Only first level library call: We only try to match li-
brary functions that were called by non-library func-
tions. As an example, in Figure 2 we will try to match
the printf function but not the putchar function that
may be called inside printf. The first level library
functions are usually a more general implementation
that requires almost no modification between plat-
forms. These implementations rely on underling func-
tions to provide platform specific resources. Although

Figure 3: Trace Mapping Flow

MIPS | PowerPC
libraries Program libraries
Source Code
1
W
. compiler : compiler .
binar] X > binar
Y (gec) | (gec) !

(" debuginfo)\ (_. |) : (. | N\ (debug info)
extractor s;nur?ct:or | s;nu;ct:or extractor
_(obidump) J (A" (Areh®)) {_obidump) J

v) .
full ! Tull
debug info instruction : instruction debug info
trace : trace
1
source code m source code
trace . trace

we restricted to only the first level, the algorithm is
easily extendable to more levels.

Same source functions: We match all the functions that
have the same amount of source code lines detected
through debug information. We can still add some ex-
ceptions that will not be compared. This approach
does look only to function that matches the very first
criteria of similar implementation but it proves re-
ally efficient to detect different implementations of the
same function among different libraries.

All functions: We try to match all the functions. Every
instruction executed by each platform will be mapped
to their source code line and we will process them in
the usual way. We still provide the option to exclude
some functions.

3.6 Limitations

The aforementioned method has some limitations that will
be addressed in future projects. The first one is that we can-
not split two commands in the same line so we cannot detect
if an if with the corresponding operation in the same line
evaluates to True or False by the program trace. In the same
way, we cannot detect if one of the operations inside the
for declaration evaluated correctly. In both cases, we think
that the rest of the program trace may be affected by an
incorrect behavior and we may be able to detect this impact
latter. Alternative implementations for these limitations in-
clude using the DWARF column name and reformatting the
source code. These two alternative implementations may
help when the correct tools are available, as mentioned in
Section 3.3.

Program optimizations also impose a challenge to the
trace generation. Some instructions may get merged to-
gether or swapped, generating a different execution order.

So far we recommend that, for the functional validation, the
user reduces the optimization effort in the same way that it
is recommended when debugging programs.

The trace file will be extremely big if every instruction
address gets written to the disk. Although we are still using
the original trace file in disk, we can easily adapt our al-
gorithm to process the address before writing them to disk
reducing the required disk space and speeding up the execu-
tion. We evaluated the trace size in Section 4 where Table
1 shows the program trace sizes for the MiBench programs.
Notice that we can also compress the traces and get a very
good improvement in disk space utilization.

4. EXPERIMENTS

We run four sets of experiments, comparing a MIPS pro-
cessor against a PowerPC one regarding the execution of a
set of programs.

The first experiment was composed by the acStone bench-
mark, acStone is a set of kernel programs used to check pro-
cessor models in increasing level of complexity, starting with
an empty program and covering most of the C language con-
structors. For all 75 programs of acStone, we compared the
execution traces generated by our tool from both processors
and they matched completely.

As a second experiment, we checked our back-edge detec-
tion algorithm and its functionality in verifying the number
of loop iterations executed. We compiled the program from
Figure 2 to MIPS and modified the for loop to 20 iterations,
as shown in Figure 6, and compiled it to PowerPC. As ex-
pected, the modified trace file mentioned the extra iterations
in the second instance (PowerPC). We also mimic another
error in the code generation by removing a function call in
bitcount, that our tool was also capable of detecting. These
two errors, together with acStone, try to expose cases where

100: addiu sp,sp,-16 1 int main() {
104: sw s8,8(sp) 2
108: move s8,sp 3
4 int a;
10c: 1i v0,-5000 5 for(a = -5000;
110: sw v0,0(s8) 6
114: 1w v0,0(s8) 7
118: nop 8
11c: slti vO,v0,-2 9
120: bnez v0,130 10
124: nop 11
128: j 144 12
12c: nop 13
130: 1w v0,0(s8) 14
134: nop 15
138: sra vO0,v0,0x1 16
13c: j 114 17
140: sw v0,0(s8) 18
19
144: 1w v0,0(s8) 20 return a;
21
148: move sp,s8 22 }
14c: 1w s8,8(sp) 23
150: jr ra 24
154: addiu sp,sp,16 25
26
// MIPS code 27 // Original C source

a < -2; a = a > 1); 10c:

100: stwu ri1,-32(ri1)
104: stw r31,28(r1)
108: mr r31,r1

1i r0,-5000
110: stw r0,8(r31)
114: lwz r0,8(r31)
118: 1i r9,-2

11c: cmpw r0,r9
120: blt- 128

124: b 138

128: 1lwz r0,8(r31)
12c¢: srawi r0,r0,1
130: stw r0,8(r31)
134: b 114

138: 1lwz r0,8(r31)

13c: mr r3,r0
140: 1lwz r11,0(r1)
144: 1wz r31,-4(ri11)
148: mr rl1,ri11
14c: blr

code // PowerPC Code

Figure 4: C source code with the MIPS (left) and PowerPC (right) versions. The assembly code blocks start

at the corresponding C source code lines

//!Instruction sra behavior method.
void ac_behavior(sra)
{

RB[rd] = (ac_Sword) RB[rt] >> shamt;
}

Tk W N

//!Instruction srl behavior method.
void ac_behavior(srl)
{
RB[rd] = RB[rt] >> shamt;
}

T W N -

Figure 5: ArchC MIPS model behavior for instructions sra and srl

the under development compiler may have bugs.

1 void SayHello(int i) {

2 if (i % 2 == 0)

3 printf ("Hello World!\n");

4 }

5 int main(int argc, char xargv[]) {
6 int i;

7 for (i = 0; i < 20; i ++)

8 SayHello (i) ;

9 }

Figure 6: Code from Figure 2 with 20 iterations
instead of 10.

The third experiment was the injection of errors in the
simulator. The error was injected on the MIPS simulator
and the PowerPC was used to detect the result. We injected
a very simple, although difficult do detect, error on the shift
right instructions. In fact, this error was a bug in the very
first version of ArchC MIPS model and took two weeks for
the developers to find it by debugging the printf function.
MIPS processors have two types of shift right instruction,
sra for arithmetic version and srl for logic version. The
correct implementation of both is shown in Figure 5. We
removed the typecast of sra (Line 4) turning it equal to srl.

This makes the MIPS version of the loop to run only one
iteration of the for, which is detected by our toolset.

The last experiment was the execution of 10 programs
with 15 variations from the MiBench Benchmark Suite [5].
Table 1 shows the evaluated programs with their trace size,
the reduced trace size, and also the amount of debug infor-
mation extracted from the binary files. The reduced trace
size can be made even smaller if compression is applied. For
example, the MIPS Bitcount program trace file originally
has 464 MB that are reduced to 45M, a 10 times reduction,
but can get as small as 20KB if compressed with bzip2. Af-
ter our algorithms, they are reduced to 45 MB for MIPS and
45 MB for PowerPC. All the resulting traces matched as ex-
pected. Some of the programs, like Basicmath, are based on
floating point operations. Since both MIPS and PowerPC
ArchC models does not include floating point instructions,
they were emulated in software, which generated very big
traces. The floating point emulation libraries have differ-
ent implementations for MIPS and PowerPC, so they were
ignored in the trace comparison, generating reduced traces
much smaller if compared to the original ones.

5. CONCLUSIONS AND FUTURE WORK

This paper presented a new approach to co-verify a pro-
gram execution by matching the execution trace from the

Program Original Traces Output Traces Debug
MIPS | PowerPC || MIPS | PowerPC || MIPS | PowerPC

ADPCM Enc 396 313 73 73 224 252
ADPCM Dec 304 242 54 54 224 252
Basicmath 6.4G 7.1G 2.1 2.1 284 316
Bitcount 464 389 45 45 244 272
CRC 268 210 16 16 236 264
Dijkstra 462 379 24 24 288 332
JPEG Enc 155 123 26 33 572 620
JPEG Dec 54 32 6.4 6.8 572 620
Quicksort 114 116 1012K 1012K 292 336
Susan Smooth 454 2.8G 33 33 364 400
Susan Edge 59 51 2.1 2.1 364 400
Susan Corners 29 25 2.1 2.1 364 400
FFT 4096 3.6G 3.9G 2.3 2.3 268 300
FFT 8192 8.6G 9.4G 5 5 268 300
SHA 154 117 4.9 4.9 224 252

Table 1: Trace Sizes for the Mibench Suite. Values are in MB unless otherwise mentioned.

current architecture against another one that has already a
correct execution environment. We developed a conversion
algorithm based on the source code debug information and
apply this algorithm for both programs, verifying the correct
execution by comparing the result trace.

We evaluated our results using all 75 programs from ac-
Stone benchmark, 3 synthetic errors injected in the pro-
grams and in the simulator, and 10 programs with 15 vari-
ations from MiBench that matched correctly.

As the future work, we intend to improve the detection
algorithm to provide a better feedback to the developer in
cases where only part of the debug information is available.
In this case, we may allow the user to skip part of the trace,
as we do now, but also to use some code detection features
to find hidden loops and function calls, and trying to match
them on the other platform.

6. ACKNOWLEDGEMENTS

This work was partially supported by CNPq, FAPESP
and FAEPEX. We would like to thank the anonymous re-
viewers for their feedback on the submitted paper.

7. REFERENCES

[1] G. Araujo, S. Rigo, and R. Azevedo. Processor
Description Languages, chapter Processor Design with
ArchC, pages 275-293. Morgan Kaufmann, 2008.

[2] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo,

C. Araujo, and E. Barros. The archc architecture
description language and tools. International Journal
of Parallel Programming, 33(5):453-484, 2005.

[3] B. Bailey, G. Martin, and A. Piziali. ESL Design and
Verification: A Prescription for Electronic System
Level Methodology. Morgan Kaufmann, 2007.

[4] D.A.S Committee. IEEE Std 1666-2005 IEEE
standard SystemC' language reference manual, 2006.

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. In Proceedings of the Workload
Characterization, 2001. WWC-4. 2001 IEEE

[6]

[7]

8]
[9]

(10]

(11]

(12]

(13]

International Workshop, pages 3—14, Washington, DC,
USA, 2001. IEEE Computer Society.

Ming-Chang Hsieh and Chih-Tsun Huang. An
embedded infrastructure of debug and trace interface
for the dsp platform. In Design Automation
Conference, 2008. DAC 2008. 45th ACM/IEEE, pages
866 —871, 2008.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005
ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’05, pages 190-200,
New York, NY, USA, 2005. ACM.

OSCI. Systemc library. WebSite, March 2011.
http://www.systemc.org.

OSCI. Tlm-2.0 standard. WebSite, March 2011.
http://www.systemc.org.

Frank Rogin, Christian Genz, Rolf Drechsler, and
Steffen Riilke. An integrated systemc debugging
environment. In Eugenio Villar, editor, Embedded
Systems Specification and Design Languages,

volume 10 of Lecture Notes in Electrical Engineering,
pages 59-71. Springer Netherlands, 2008.
10.1007/978-1-4020-8297-9-5.

Kanna Shimizu, Sanjay Gupta, Tatsuya Koyama,
Takashi Omizo, Jamee Abdulhafiz, Larry McConville,
and Todd Swanson. Verification of the cell broadband
engine; processor. In Proceedings of the 43rd annual
Design Automation Conference, DAC ’06, pages
338-343, New York, NY, USA, 2006. ACM.

ArchC Team. Archc architecture description language.
WebSite, March 2011. http://www.archc.org.

Thomas Wild, Andreas Herkersdorf, and Gyoo-Yeong
Lee. Tapes—trace-based architecture performance
evaluation with systemc. Design Automation for
Embedded Systems, 10:157-179, 2005.
10.1007/s10617-006-9589-4.

